In vitro, in situ and in vivo comparison of two feeding regimes in water buffalo (Bubalus bubalis) under tropical conditions
DOI:
https://doi.org/10.48165/ijvsbt.22.1.50Keywords:
Water buffalo, formulated diet, rumen fermentation, productive performance, regionalAbstract
The increasing demand for animal protein requires efficient production systems adapted to tropical conditions. Water buffalo farming is a variable option due to its hardiness and productive potential. This study compared the fermentative and productive performance of buffalo fed a commercial diet or a diet formulated with regional ingredients. Ten weaned male buffalo (230 ± 20.0 kg) were randomly assigned to the two diets for a 60-day fattening period. Dry matter intake (DMI), average daily gain (ADG), feed conversion ratio (FCR), and feed efficiency (FE) were recorded. And in vitro and in situ rumen fermentation assay were conducted. DMI and final weight did not differ between diets (P > 0.05). The formulated diet increased ADG by 30.4% with a trend towards significance (P = 0.09) and improved FCR and FE (P > 0.05). The commercial diet promoted greater in vitro gas production and nutrient degradations, and a higher soluble fraction in situ, whereas the formulated diet increased the potentially degradable fraction and lag time. Overall, the diet formulated with regional ingredients maintained comparable, and biologically superior, productive performance to the commercial diet in beef buffalo under tropical conditions, despite lower degradability in vitro and in situ.
Downloads
References
Bashar, M. K., Haese, E., Sultana, N., & Rodehutscord, M. (2024). In vitro ruminal fermentation, methane emissions, and nutritional value of different tropical feedstuffs for ruminants. Journal of Advanced Veterinary and Animal Research, 11(4), 924–935. https://doi.org/10.5455/javar.2024.k842
Batista, J. N., Pereira, F. B., Pereira Filho, J. M., de Lima Junior, V., dos Santos, V. L. F., Araújo, M. J., et al. (2020). Replacing corn bran and soybean meal in the diet with spineless cactus and cottonseed affects ingestive behaviour, performance, carcass characteristics and meat quality of Murrah water buffalo. Animal Production Science, 60(7), 877–886. https://doi.org/10.1071/AN19260
Bertoni, A., Álvarez-Macías, A., Mota-Rojas, D., Dávalos, J. L., & Minervino, A. H. H. (2022). Description of four dual-purpose river buffalo (Bubalus bubalis) farms in tropical wetlands in Mexico. Part 1: Social aspects, herd distribution, feeding, reproductive, and genetic management. Journal of Buffalo Science, 11, 8–18.
Borghese, A., T. G. M., M. M., M. R., Sabia, E., & Corrado, P. (2010). Fattening of buffalo young bulls with different diets. Revista Veterinaria, 21, 511–516.
Dixit, S., Kumar, S., Sharma, R., Banakar, P. S., Deb, R., & Tyagi, A. K. (2023). Rumen microbial diversity, enteric methane emission and nutrient utilization of crossbred Karan-Fries cattle (Bos taurus) and Murrah buffalo (Bubalus bubalis) consuming varied roughage–concentrate ratio. Animal Biotechnology, 34(6), 1857–1875. https://doi.org/10.1080/10495398.2022.2053696
FAO. (2024). Gateway to dairy production and products. Food and Agriculture Organization of the United Nations. https://www.fao.org
Ferreira, G., & Thiex, N. (2023). Symposium review: Fiber and in vitro methods, analytical variation, d contributions to feed analysis. Journal of Dairy Science, 106(6), 4464–4469. https://doi.org/10.3168/jds.2022-22407
Foster, J. L., Smith, W. B., Rouquette, F. M., & Tedeschi, L. O. (2023). Forages and pastures symposium: An update on in vitro and in situ experimental techniques for approximation of ruminal fiber degradation. Journal of Animal Science, 101, skad097. https://doi.org/10.1093/jas/skad097
Goulart, R. S., Vieira, R. A. M., Daniel, J. L. P., Amaral, R. C., Santos, V. P., Toledo Filho, S. G., et al. (2020). Effects of source and concentration of neutral detergent fiber from roughage in beef cattle diets on feed intake, ingestive behavior, and ruminal kinetics. Journal of Animal Science, 98(5), skaa107. https://doi.org/10.1093/jas/skaa107
Hernández-Sánchez, D., Rodríguez-Florentino, R., Ramírez-Bribiesca, E., Crosby Galván, M. M., Mata-Espinosa, M. Á., & Pinto-Ruiz, R. (2022). Comportamiento productivo de búfalos (Bubalus bubalis L. en dos sistemas de producción y dos pesos al sacrificio. Agro-Divulgación, 2(5), 1–12. https://agrodivulgacioncolpos.org/index.php/1agrodivulgacion1/article/view/104
Iannuzzi, A., Parma, P., & Iannuzzi, L. (2021). The cytogenetics of the water buffalo: A review. Animals, 11(11), 1–17. https://doi.org/10.3390/ani11113109
Martins, L. F., Cueva, S. F., Lage, C. F. A. Ramin, M., Silvestre, T., Tricarico, J., et al. (2023). A meta-analysis of methane mitigation potential of feed additives evaluated in vitro. Journal of Dairy Science. Advance online publication. https://doi.org/10.3168/jds.2023-23419
Minervino, A. H. H., Zava, M., Vecchio, D., & Borghese, A. (2020). Bubalus bubalis: A short story. Frontiers in Veterinary Science, 7, 570413. https://doi.org/10.3389/fvets.2020.570413
Mohd Azmi, A. F., Ahmad, H., Mohd Nor, N., Goh, Y. M., Zamri-Saad, M., Abu Bakar, M. Z., et al. (2021). The impact of feed supplementations on Asian buffaloes: A review. Animals, 11(7), 1–25. https://doi.org/10.3390/ani11072033
Mor, P., Bals, B., Tyagi, A. K., Teymouri, F., Tyagi, N., Kumar, S., et al. (2018). Effect of ammonia fiber expansion on the available energy content of wheat straw fed to lactating cattle and buffalo in India. Journal of Dairy Science, 101(9), 7990–8003. https://doi.org/10.3168/jds.2018-14584
NRC. (2001). Nutrient requirements of dairy cattle (7th ed., pp. 43–104). National Academy Press.
Patra, A., Park, T., Kim, M., & Yu, Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8, 13. https://doi.org/10.1186/s40104-017-0145-9
Pepeta, B. N., Hassen, A., & Tesfamariam, E. H. (2024). Quantifying the impact of different dietary rumen modulating strategies on enteric methane emission and productivity in ruminant livestock: A meta-analysis. Animals, 14(5), 1–22. https://doi.org/10.3390/ani14050763
Posada, S. L., & Noguera, R. R. (2005). Técnica in vitro de producción de gases: Una herramienta para la evaluación de alimentos para rumiantes. Livestock Research for Rural Development, 17(4), 36. http://lrrd.cipav.org.co/lrrd17/4/posa17036.htm
Pu, X. X., Zhang, X. M., Li, Q. S., Wang, R., Zhang, M., Zhang, S. Z., et al. (2022). Comparison of in situ ruminal straw fiber degradation and bacterial community between buffalo and Holstein fed with high-roughage diet. Frontiers in Microbiology, 13, 1079056. https://doi.org/10.3389/fmicb.2022.1079056
Rojas-González, A. J., Arriaga-Jordán, C. M., Sánchez-Torres, J. E., Mejía Uribe, L. A., Rayas-Amor, A. A., & Morales-Almaráz, E. (2023). In vitro assessment of ruminal biohydrogenation of polyunsaturated fatty acids in diets with different types and levels of protected fat and diverse sources of fibre. Tropical Animal Health and Production, 56(1), 28. https://doi.org/10.1007/s11250-023-03859-y
Rupp, C., Westreicher-Kristen, E., & Susenbeth, A. (2021). In situ and in vitro determination of the protein value of feeds for ruminants. Archives of Animal Nutrition, 75(5), 329–344. https://doi.org/10.1080/1745039X.2021.1962149
Sheoran, S., Dey, A., & Sindhu, S. (2023). Reduction of methane and nitrogen emission and improvement of feed efficiency, rumen fermentation, and milk production through strategic supplementation of eucalyptus (Eucalyptus citriodora) leaf meal in the diet of lactating buffalo (Bubalus bubalis). Environmental Science and Pollution Research, 30(60), 125510–125525. https://doi.org/10.1007/s11356-023-31089-0
Trapanese, L., Petrocchi Jasinski, F., Bifulco, G., Pasquino, N., Bernabucci, U., & Salzano, A. (2024). Buffalo welfare: A literature review from 1992 to 2023 with a text mining and topic analysis approach. Italian Journal of Animal Science, 23(1), 570–584. https://doi.org/10.1080/1828051X.2024.2333813
Uzun, P., Masucci, F., Serrapica, M. L., Varricchio, C., Pacelli, S., Claps, S., & Francia, A. D. (2018). Use of mycorrhizal inoculum under low fertilizer application: Effects on forage yield, milk production, and energetic and economic efficiency. Journal of Agricultural Science, 156, 127–135. https://doi.org/10.1017/S0021859618000072
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Indian Journal of Veterinary Sciences and Biotechnology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

