BIOCONTROL POTENTIAL OF METARHIZIUM ANISOPLIAE AGAINST TURCICUM LEAF SPOT AND GROWTH PROMOTION TRAITS OF MAIZE

Authors

  • Janhavi S Dandge Department of Plant Pathology, Dr. PDKV, Akola-444104, Maharashtra, India.
  • S B Bramhankar Department of Plant Pathology, Dr. PDKV, Akola-444104, Maharashtra, India.
  • S V Shinde Department of Plant Pathology, Dr. PDKV, Akola-444104, Maharashtra, India.
  • V R Shegokar Department of Plant Pathology, Dr. PDKV, Akola-444104, Maharashtra, India.
  • S G Adhaukar Department of Plant Pathology, Dr. PDKV, Akola-444104, Maharashtra, India.
  • S A Kakad Department of Plant Pathology, Dr. PDKV, Akola-444104, Maharashtra, India.
  • D G Tathod Department of Plant Pathology, Dr. PDKV, Akola-444104, Maharashtra, India.

DOI:

https://doi.org/10.48165/jpds.2025.20.2.14

Keywords:

Biocontrol, Exserohilum, Indole-3-acetic acid. Maize, Metarhizium,

Abstract

This study investigates the biocontrol potential and plant growth promoting abilities of five isolates of (Ma1 to Ma 5) against ,Exserohilum turcicum the causative agent of maize leaf blight. Among the isolates, Ma2 demonstrated the highest antagonistic activity, achieving 84.66% growth inhibition of , indicating its potential as a biocontrol agent. The study also evaluated plant growth promoting traits of , including iron chelation through siderophore production, phosphate solubilization, indole-3- acetic acid (IAA) synthesis and ammonia production, with Ma2 excelling in these areas. Notably, Ma2 showed 70.45% siderophore activity, 57.80% phosphate solubilization efficiency and IAA production of 49.65 μg/ml. Overall, this study highlights Ma2 as a dual function agent, effective against and as a promoter of plant growth of maize.

References

Ahmad, I., M. D. M. Jimenez-Gasco and D. S. Luthe, 2014. Metachelins, mannosylated and N-oxidized coprogen type siderophores from Metarhizium robertsii. Journal of Natural Products, 77: 1685–1692.

Krasnoff, S. B., I. Keresztes, B. G. G. Donzelli and D. M. Gibson, 2014. Metachelins, mannosylated and N-oxidized coprogen type siderophores from Metarhizium robertsii. Journal of Natural Products, 77: 1685–1692.

Kumar, C. S. M., S. D. Silva, R. Praveena, A. Kaprakkaden, L. R. A. Krishnan, M. B. Rajkumar, V. Srinivasan and R. Dinesh, 2024. Zinc solubilization and organic acid production by the entomopathogenic fungus Metarhizium pingshaense. Journal of Fungi, 8(9): 942.

Shakeel, N. and M. E. Barbercheck, 2020. Endophytic Metarhizium robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression. Biological Control, 144: 104–167.

Li, C., Y. Xia and K. Jin, 2022. The C2H2 zinc finger protein MaNCP1 contributes to conidiation through governing the nitrate assimilation pathway in the entomopathogenic fungus Metarhizium acridum. Journal of Fungi, 8: e9005.

Baron, N. C., A. S. Pollo and E. C. Rigobelo, 2020. Purpureocillium lilacinum and Metarhizium marquandii as plant growth promoting fungi. PeerJ, 8: e9005.

Mehta, J., N. Kaushal, P. Sen, D. R. Sharma, M. S. Dhillon and B. L. Mathuriya, 2012. Impact of carbon and nitrogen sources on Verticillium lecanii, Metarhizium anisopliae and other entomopathogenic fungi. Journal of Experimental Biology, 2(4): 1278–1283.

Espinoza, F., E. Quesada-Moraga, M. J. García del Rosal and M. Yousef-Yousef, 2023. Entomopathogenic fungi mediated solubilization and induction of Fe-related genes in melon and cucumber plants. European Journal of Fungi, 9(2): 258.

Patten, C. and B. R. Glick, 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42: 207–220.

Franco, F. R., J. G. Hampton, E. Maria, M. Diez, J. Narciso, M. Rostás, P. Wessman, T. A. Jackson and T. R. Glare, 2019. Effect of coating maize seed with entomopathogenic fungi on plant growth and resistance against Fusarium graminearum and Costelytra giveni. Biocontrol Science and Technology, 29(9): 877–900.

Pina-Torres, I. H., F. Dávila Berumen, G. A. González-Hernández, J. C. Torres-Guzmán and I. E. Padilla-Guerrero, 2023. Hyphal growth and conidia germination are induced by phytohormones in the root-colonizing and plant growth-promoting fungus Metarhizium guizhouense. Journal of Fungi, 9: 945.

Hooda, K. S., M. K. Khokhar, M. Shekhar, C. G. Karjagi, B. Kumar, N. Mallikarjuna, R. K. Devlash, C. Chandrashekara and O. P. Yadav, 2017. Turcicum leaf blight: sustainable management of a re-emerging maize disease. Journal of Plant Diseases and Protection, 124: 101–113.

Siqueira, A. C. O., G. M. Mascarin, C. R. N. C. B. Gonçalves, J. Marcon, M. C. Quecine, A. Figueira and I. J. Delalibera, 2020. Multi-trait biochemical features of Metarhizium species and their activities that stimulate the growth of tomato plants. Frontiers in Sustainable Food Systems, 4: 137.

Published

2025-12-29

How to Cite

BIOCONTROL POTENTIAL OF METARHIZIUM ANISOPLIAE AGAINST TURCICUM LEAF SPOT AND GROWTH PROMOTION TRAITS OF MAIZE. (2025). Journal of Plant Disease Sciences, 20(2), 164-167. https://doi.org/10.48165/jpds.2025.20.2.14