BIOSENSORS - A NOVEL TECHNOLOGY FOR RAPID AND ON-SITE PLANT PATHOGEN DIAGNOSTICS

Authors

  • Prajakta V Shelke Department of Plant Pathology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola-444104, Maharashtra
  • R S Chandurkar Department of Plant Pathology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola-444104, Maharashtra
  • Minal B Waghamare Department of Plant Pathology, Uttar Banga Krishi Vishwavidhalaya, Pundibari, Cooch Behar, West Bengal
  • V P Shinde Department of Plant Pathology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola-444104, Maharashtra
  • Y V Ingle AICRP on Fruits, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola-444104, Maharashtra

DOI:

https://doi.org/10.48165/jpds.2025.20.2.2

Keywords:

Biosensors, Disease surveillance, Integrated disease management (IDM), Nanobiosensors, On-site diagnostics Plant pathogen detection,

Abstract

Timely and accurate detection of plant pathogens is essential to safeguard global food production, particularly in the context of emerging diseases and climate-induced agricultural vulnerabilities. Conventional diagnostic techniques such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and loop-mediated isothermal amplification (LAMP), although effective under laboratory conditions, are often constrained by high costs, extended processing times, and limited field portability. In this context, biosensor technology has emerged as a promising alternative, enabling rapid, sensitive, and on-site detection of plant pathogens with minimal technical requirements. This review examines the evolution, historical development, and recent advances in biosensor-based diagnostics for plant disease detection. Various biosensor platforms, including antibody-based, DNA-based, optical, and electrochemical biosensors, are discussed. These devices utilize molecular recognition mechanisms that convert biological interactions into measurable signals through techniques such as impedance spectroscopy, surface plasmon resonance, and colorimetric assays. Special emphasis is placed on the incorporation of nanomaterials, including gold nanoparticles, quantum dots, and carbon nanotubes, which significantly enhance detection sensitivity, signal transduction, and probe stability. Despite notable progress, several challenges remain, such as analyte interference, limited multiplexing capability, and the need for robust field validation. Nevertheless, ongoing innovations in microfluidics, portable sensing platforms, and artificial intelligence-integrated diagnostics are expected to accelerate the adoption of biosensors in plant disease surveillance. The integration of biosensor technologies into agricultural monitoring systems supports early disease intervention, reduces reliance on chemical inputs, and represents a critical step toward sustainable, data-driven, and resilient farming practices.

References

Bhatia, D., Paul, S., Acharjee, T., & Ramachairy, S. S. (2024). Biosensors and their widespread impact on human health. Sensors, 5, 100257.

Byrne, B., Stack, E., Gilmartin, N., & O’Kennedy, R. (2009). Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel), 9(6), 4407–4445. https://doi.org/10.3390/s90604407

Cebula, Z., Zoledowska, S., Dziabowska, K., Skwarecka, M., Malinowska, N., Bialobrzeska, W., Czaczyk, E., Siuzdak, K., Sawczak, M., Bogdanowicz, R., & Nidzworski, D. (2019). Detection of Pseudomonas syringae pv. lachrymans on antibody-modified gold electrodes by electrochemical impedance spectroscopy. Sensors, 19(24), 5411. https://doi.org/10.3390/s19245411

Charlermroj, R., Himananto, O., Seepiban, C., Kumpoosiri, M., Warin, N., Oplatowska-Stachowiak, M., Gajanandana, O., Grant, I., Karoonuthaisiri, N., & Elliott, C. (2013). Multiplex detection of plant pathogens using microsphere immunoassay technology. PLOS One, 8, e62344. https://doi.org/10.1371/journal.pone.0062344

Cinquanta, L., Albanese, D., de Curtis, F., Malvano, F., Crescitelli, A., & di Matteo, M. (2015). Rapid assessment of gray mold (Botrytis cinerea) infection in grapes with a biosensor system. American Journal of Enology and Viticulture, 66(4), 502–508.

Dixon, M. C. (2008). Quartz crystal microbalance with dissipation monitoring: Enabling real-time characterization of biological materials and their interactions. Journal of Biomolecular Techniques, 19(3), 151–158.

Drygin, Y. F., Blintsov, A. N., Grigorenko, V. G., Andreeva, I. P., Osipov, A. P., & Varitzev, Y. A. (2012). Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Applied Microbiology and Biotechnology, 93, 179–189. https://doi.org/10.1007/s00253-011-3522-x

Ebrahimi, M., Norouzi, P., Safarnejad, M. R., Tabaei, O., & Haji-Hashemi, H. (2019). Fabrication of a label-free electrochemical immunosensor for direct detection of Candidatus Phytoplasma aurantifolia. Journal of Electroanalytical Chemistry, 851, 113451. https://doi.org/10.1016/j.jelechem.2019.113451

Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537

Fang, W., Wu, J., Cheng, M., Zhu, X., Du, M., Chen, C., Liao, W., Zhi, K., & Pan, W. (2023). Diagnosis of invasive fungal infections: Challenges and recent developments. Journal of Biomedical Science, 30, 42. https://doi.org/10.1186/s12929-023-00926-2

Feng, M., Kong, D., Wang, W., Liu, L., Song, S., & Xu, C. (2015). Development of an immunochromatographic strip for rapid detection of Pantoea stewartii subsp. stewartii. Sensors, 14, 18611–18624. https://doi.org/10.3390/s141018611

Franco, A. J. D., Merca, F. E., Rodriguez, M. S., Balidion, J. F., Migo, V. P., & Amalin, D. M. (2019). DNA-based electrochemical nanobiosensor for detection of Phytophthora palmivora causing black pod rot of cacao. Physiological and Molecular Plant Pathology, 107, 14–20. https://doi.org/10.1016/j.pmpp.2019.04.004

John, M. A., Bankole, I., Ajayi-Moses, O., Ijila, T., Jeje, O., & Lalit, P. (2023). Relevance of advanced plant disease detection techniques in disease and pest management for ensuring food security: A review. American Journal of Plant Sciences, 14, 1260–1295. https://doi.org/10.4236/ajps.2023.1411086

Khater, M., de la Escosura-Muñiz, A., Quesada-González, D., & Merkoçi, A. (2019). Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Analytica Chimica Acta, 1046, 123–131.

Lin, H.-Y., Huang, C.-H., Lu, S.-H., Kuo, I.-T., & Chau, L.-K. (2014). Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosensors and Bioelectronics, 51, 371–378. https://doi.org/10.1016/j.bios.2013.08.009

Malecka, K., Michalczuk, L., Radecka, H., & Radecki, J. (2014). Ion-channel genosensor for detection of specific DNA sequences. Biosensors, 5(3), 537–561.

Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured material-enabled biosensors. Sensors (Basel), 21(4), 1109. https://doi.org/10.3390/s21041109

Pande, S., Siddique, K. H. M., Kishore, G. K., Bayaa, B., Gaur, P. M., Gowda, C. L. L., Bretag, T. W., & Crouch, J. H. (2005). Ascochyta blight of chickpea (Cicer arietinum L.): Biology, pathogenicity and disease management. Australian Journal of Agricultural Research, 56, 317–332. https://doi.org/10.1071/AR04143

Gai, Y., & Wang, H. (2024). Plant disease: A comprehensive review of emerging detection technologies.

Patel, P. A. (2021). Review on plant disease diagnosis through biosensor. Journal of Biosensors & Bioelectronics, 7(2), 50–52. https://doi.org/10.15406/ijbsbe.2021.07.002122

Garg, N., Farhan, J. A., & S. K. (2022). Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Current Research in Microbial Sciences, 3, 100120. https://doi.org/10.1016/j.crmicr.2022.100120

Ramesh, M., Janani, R., Deepa, C., & Rajeshkumar, L. (2022). Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Agronomy, 14, 1615. https://doi.org/10.3390/agronomy14081615

Huang, X., Xu, J., Ji, H.-F., Li, G., & Chen, H. (2014). Quartz crystal microbalance-based biosensor for rapid and sensitive detection of maize chlorotic mottle virus. Analytical Methods, 6, 4530–4536. https://doi.org/10.1039/c4ay00292j

Jarocka, U., Wasowicz, M., Radecka, H., Malinowski, T., Michalczuk, L., & Radecki, J. (2011). Impedimetric immunosensor for detection of plum pox virus in plant extracts. Electroanalysis, 23, 2197–2204. https://doi.org/10.1002/elan.201100152

Ramu, M. S., & Vazhacharickal, P. (2022). Crop Loss Assessment in Agriculture. Amazon Publishers, USA. ISBN: 9798830637916

Razmi, A., Golestanipour, A., Nikkhah, M., Bagheri, A., Shamsbakhsh, M., & Malekzadeh Shafaroudi, S. (2019). Localized surface plasmon resonance biosensing of tomato yellow leaf curl virus. Journal of Virological Methods, 267, 1–7.

Regiart, M., Rinaldi-Tosi, M., Aranda, P. R., Bertolino, F. A., Villarroel-Rocha, J., & Sapag, K. (2017). Development of a nanostructured immunosensor for early and in situ detection of Xanthomonas arboricola in agricultural food production. Talanta, 175, 535–541. https://doi.org/10.1016/j.talanta.2017.07.086

Vaseghi, A., Safaie, N., Bakhshinejad, B., Mohsenifar, A., & Sadeghizadeh, M. (2013). Detection of Pseudomonas syringae pathovars by thiol-linked DNA gold nanoparticle probes. Sensors and Actuators B: Chemical, 181, 644–651. https://doi.org/10.1016/j.snb.2013.02.018

Rettcher, S., Jungk, F., Kühn, C., Krause, H., Nölke, G., & Commandeur, U. (2015). Simple and portable magnetic immunoassay for rapid detection and sensitive quantification of plant viruses. Applied and Environmental Microbiology, 81(9), 3039–3048.

Wang, L., & Li, P. C. H. (2007). Flexible microarray construction and fast DNA hybridization on a microfluidic chip for greenhouse plant fungal pathogen detection. Journal of Agricultural and Food Chemistry, 55, 10509–10516. https://doi.org/10.1021/jf0721242

Sharma, A., Kaushal, A., & Kulshrestha, S. (2017). Nano-Au/C-MWCNT based label-free amperometric immunosensor for detection of capsicum chlorosis virus in bell pepper. Archives of Virology, 162(7), 2047–2052.

Wang, Q., Wang, J., Huang, Y., Du, Y., Zhang, Y., Cui, Y., & Kong, D. (2022). Development of DNA-based biosensors for high-performance detection of molecular biomarkers. Biosensors and Bioelectronics, 197, 113739. https://doi.org/10.1016/j.bios.2021.113739

Shojaei, T., Salleh, M., Sijam, K., Rahim, R., Mohsenifar, A., Safarnejad, R., & Tabatabaei, M. (2016). Detection of Citrus tristeza virus usinfluorescence resonance energy transfer-based biosensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 216–222.

Wee, E. J. H., Lau, H. Y., Botella, J. R., & Trau, M. (2015). Re-purposing bridging flocculation for on-site, rapid qualitative DNA detection in resource-poor settings. Chemical Communications, 51, 5828–5831. https://doi.org/10.1039/c4cc10068a

Sofiene, M. (2024). Detection of pathogenic bacteria with nanozyme-based colorimetric biosensors: Advances, challenges and future prospects. Microchemical Journal, 205, 111392. https://doi.org/10.1016/j.microc.2024.111392

Soroka, M., Wasowicz, B., & Rymaszewska, A. (2021). Loop-mediated isothermal amplification (LAMP): The better sibling of PCR? Cells, 10(8), 1931. https://doi.org/10.3390/cells10081931

Wei, J., Liu, H., Liu, F., Zhu, M., Zhou, X., & Xing, D. (2014). Miniaturized paper-based gene sensor for rapid and sensitive identification of plant virus. ACS Applied Materials & Interfaces, 6, 22577–22584. https://doi.org/10.1021/am506695g

Wongkaew, P., & Poosittisak, S. (2014). Diagnosis of sugarcane white leaf disease using highly sensitive DNA-based voltammetric electrochemical determination. American Journal of Plant Sciences, 5, 2256. https://doi.org/10.4236/ajps.2014.515240

Tang, Y.-B., Xing, D., Zhu, D.-B., & Liu, J.-F. (2007). Improved electrochemiluminescence PCR method for highly sensitive detection of plant viruses. Analytica Chimica Acta, 582, 275–280. https://doi.org/10.1016/j.aca.2006.09.021

Tereshchenko, A., Bechelany, M., Viter, R., Khranovskyy, V., Smyntyna, V., Starodub, N., & Yakimova, R. (2016). Optical biosensors based on ZnO nanostructures: Advantages and perspectives. Sensors and Actuators B: Chemical, 229, 664–677.

Thevenot, D., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: Recommended definitions and classifications. Pure and Applied Chemistry, 71(12), 2333–2348. https://doi.org/10.1351/pac199971122333

Tovar-Lopez, F. J. (2023). Recent progress in micro- and nanotechnology-enabled sensors for biomedical and environmental challenges. Sensors, 23(12), 5406. https://doi.org/10.3390/s23125406

Yaoxin, F., Tiegen, L., Haonan, W., Ziyihui, W., Lili, H., Junfeng, J., & Tianhua, X. (2024). Applications of nanomaterial technology in biosensing. Journal of Science: Advanced Materials and Devices, 9(2), 100694. https://doi.org/10.1016/j.jsamd.2024.100694

Zhan, F., Wang, T., Iradukunda, L., & Zhan, J. (2018). Gold nanoparticle-based lateral flow biosensor for sensitive visual detection of Phytophthora infestans. Analytica Chimica Acta, 1036, 153–161. https://doi.org/10.1016/j.aca.2018.06.083

Zhang, F., Zou, M., Chen, Y., Li, J., Wang, Y., & Qi, X. (2014). Lanthanide-labeled immunochromatographic strips for rapid detection of Pantoea stewartii subsp. stewartii. Biosensors and Bioelectronics, 51, 29–35. https://doi.org/10.1016/j.bios.2013.06.065

Zhao, W., Lu, J., Ma, W., Xu, C., Kuang, H., & Zhu, S. (2011). Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosensors and Bioelectronics, 26, 4241–4244. https://doi.org/10.1016/j.bios.2011.04.004

Published

2025-12-29

How to Cite

BIOSENSORS - A NOVEL TECHNOLOGY FOR RAPID AND ON-SITE PLANT PATHOGEN DIAGNOSTICS . (2025). Journal of Plant Disease Sciences, 20(2), 91-103. https://doi.org/10.48165/jpds.2025.20.2.2