Nanofluid flow, heat and mass transfer over a linear stretching surface under convective boundary conditions by considering MHD and chemical reaction effects is three-dimensional
DOI:
https://doi.org/10.48165/jmmfc.2025.2207Keywords:
Chemical reactions, magneto hydrodynamic (MHD), Williamson fluid, OHAMAbstract
This paper addresses Transport of heat and flow in dimensions behaviour of a Williamson nanofluid flowing across a porous layer for extending under the influence of magneto hydrodynamic (MHD) forces, heat rays, Darcy Forchheimer resistance, and chemical reaction influence. The governing nonlinear partial differential equations were abridged to similarity transformations into ordinary differential equations and to solve them systematically by the optimum Technique of homotopy investigation (OHAM). Effects of thermophoresis, Brownian motion, Deborah number, Prandtl number, porosity factor, Forchheimer number, and chemical reaction in addition radiation parameters taking place velocity, temperature and concentration profiles were studied in detail. It shows that velocity field is reducing in porosity, Forchimmer number, and magnetic parameter whereas stretching parameter improves the flow. Moreover, porous and inertial effects suppress the drag forces but the Williamson parameter enhances them. Larger values of Prandtl number, Chemical reactions with rays increase the rate of heat transfer whereby, the Brownian principle and thermophoretic diffusion reduces it.References
1. Rasool, G., Shafiq, A., Alqarni, M. S., Wakif, A., Khan, I., & Bhutta, M. S. (2021). Numerical scrutinization of Darcy-Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by nonlinear stretching surface in the perspective of heat and mass transfer. Micromachines, 12(4), 374.
2. Rasool, G., Shafiq, A., Khalique, C. M., & Zhang, T. (2019). Magnetohydrodynamic Darcy– Forchheimer nanofluid flow over a nonlinear stretching sheet. Physica Scripta, 94(10), 105221. 3. Anwar, S., Rasool, G., Ashraf, M., Ahmad, U., & Sun, T. (2024). Impact of viscous dissipation and ohmic heating on natural convection heat transfer in thermo-magneto generated plume. Frontiers in Heat and Mass Transfer, 22(5), 1323-1341.
4. Akbar, S., & Sohail, M. (2022). Three dimensional MHD viscous flow under the influence of thermal radiation and viscous dissipation. Int. J. Emerg. Multidiscip. Math, 1(3), 106-117. 5. Rasool, G., Shafiq, A., Khalique, C. M., & Zhang, T. (2019). Magnetohydrodynamic Darcy– Forchheimer nanofluid flow over a nonlinear stretching sheet. Physica Scripta, 94(10), 105221. 6. Khan, M., Irfan, M., & Khan, W. A. (2019). Heat transfer enhancement for Maxwell nanofluid flow subject to convective heat transport. Pramana, 92(2), 17.
7. Khan, S. U., Shehzad, S. A., & Ali, N. (2020). Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity. Applied Nanoscience, 10(8), 3325-3336.
8. Saeed, A., Tassaddiq, A., Khan, A., Jawad, M., Deebani, W., Shah, Z., & Islam, S. (2020). Darcy-Forchheimer MHD hybrid nanofluid flow and heat transfer analysis over a porous stretching cylinder. Coatings, 10(4), 391.
9. Ali, B., Nie, Y., Khan, S. A., Sadiq, M. T., & Tariq, M. (2019). Finite element simulation of multiple slip effects on MHD unsteady maxwell nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence of chemical reaction. Processes, 7(9), 628.
10. Ali, B., Nie, Y., Hussain, S., Manan, A., & Sadiq, M. T. (2020). Unsteady magneto hydrodynamic transport of rotating Maxwell nanofluid flow on a stretching sheet with Cattaneo– Christov double diffusion and activation energy. Thermal Science and Engineering Progress, 20, 100720.
11. Ali, F., Zaib, A., Khalid, M., Padmavathi, T., & Hemalatha, B. (2023). Unsteady MHD flow of casson fluid past vertical surface using Laplace transform solution. Journal of Computational Biophysics and Chemistry, 22(03), 361-370.
12. Ali, F., Zaib, A., Khalid, M., Padmavathi, T., & Hemalatha, B. (2023). Unsteady MHD flow of casson fluid past vertical surface using Laplace transform solution. Journal of Computational Biophysics and Chemistry, 22(03), 361-370.
13. Wakif, A., Boulahia, Z., & Sehaqui, R. (2018). A semi-analytical analysis of electro-thermo hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results in Physics, 9, 1438-1454.
14. Abdelsalam, S. I., & Sohail, M. (2020). Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms. Pramana, 94(1), 67. 15. Uddin, I., Akhtar, R., Khan, M. A. R., Zhiyu, Z., Islam, S., Shoaib, M., & Raja, M. A. Z. (2019). Numerical treatment for fluidic system of activation energy with non-linear mixed convective and radiative flow of magneto nanomaterials with Navier’s velocity slip. AIP Advances, 9(5). 16. Hayat, T., Imtiaz, M., & Alsaedi, A. (2015). Effects of homogeneous-heterogeneous reactions in flow of Powell-Eyring fluid. Journal of Central South University, 22(8), 3211-3216. 17. Shah, Z., Islam, S., Ayaz, H., & Khan, S. (2019). Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of Hall current. Journal of Heat Transfer, 141(2), 022401.
18. Wakif, A., Animasaun, I. L., Khan, U., Shah, N. A., & Thumma, T. (2021). Dynamics of radiative-reactive Walters-b fluid due to mixed convection conveying gyrotactic microorganisms, tiny particles experience haphazard motion, thermo-migration, and Lorentz force. Physica Scripta, 96(12), 125239.
19. Jagadeesh, S., Chenna Krishna Reddy, M., Tarakaramu, N., Ahmad, H., Askar, S., & Shukhratovich Abdullaev, S. (2023). Convective heat and mass transfer rate on 3D Williamson nanofluid flow via linear stretching sheet with thermal radiation and heat absorption. Scientific Reports, 13(1), 9889.
20. Akbar, S., Sohail, M., Abbas, S.T., Fouly, A. and Awwad, E.M., 2025. Entropy analysis of 3D model of non‐Newtonian Williamson comprising modified heat flux and Joule heating via optimal homotopic strategy. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 105(9), p.e70232.
21. Sultan, F., Awais, M., Sohail, M. and Mahariq, I., 2025. MHD and thermal effects on three‐ dimensional non‐Newtonian Williamson fluid flow over a stretching sheet via numerical scheme. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 105(8), p.e70174.
22. Sohail, M., Rafique, E., Mahariq, I. and Qureshi, I.H., 2024. Analytical investigation via OHAM on thermally magnetized non-Newtonian Williamson fluid with heat generation and thermal radiation effects. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, p.23977914251338150.
23. Riaz, N., Sohail, M., Rani, A. and Mahariq, I., 2025. Engagement of OHAM to Investigate Heat and Mass Transfer in Williamson Fluid via Generalized Fluxes with Convective Boundary Conditions. Thermal Advances, p.100061.
24. Sohail, M., Waseem, F., Abodayeh, K., & Rafique, E. (2025). Analysis of entropy generation on Darcy-Forchheimer squeezed hybrid nanofluid flow between two parallel rotating disks by considering thermal radiation and viscous dissipation. Numerical Heat Transfer, Part B: Fundamentals, 1–23.

