A Brief Review of The Development of The Theory of Dynamical Systems
DOI:
https://doi.org/10.48165/jmmfc.2025.2206Keywords:
Dynamical Systems, Poincaré‟s contribution, Mathematical Modeling and Analysis, Aleksandr Lyapunov contribution, David Birkhoff ContributionAbstract
In this paper, we present a brief analysis of the evolution of theories of dynamical systems applied in various mathematical Models. In this study, the contributions of some notable mathematicians have been extensively discussed in the context of multiple applications of mathematical theories to dynamical systems. The investigation of the stability of periodic solutions, the stability of equilibrium, and Poincaré‟s periodicity has also been discussed in this paper. Moreover, an extensive study has been carried out on a brief application of the Poincaré Maps, the Last Geometric Theorem, the Restricted Three-Body Problem, the Generalized Hopf bifurcation, and the Van der Pol and Lienard equation for various mathematical models applied in dynamical systems.
References
Group A: Henri Poincaré – Celestial Mechanics & Foundations of Dynamical Systems
Poincaré H. Les méthodes nouvelles de la mécanique céleste. Vol. 1. Paris: Gauthier-Villars; NASA reprint, USA.
Poincaré H. Les méthodes nouvelles de la mécanique céleste. Vol. 2. Paris: Gauthier-Villars.
Poincaré H. Les méthodes nouvelles de la mécanique céleste. Vol. 3. Paris: Gauthier-Villars.
Poincaré H. Sur le problème des trois corps et les équations de la dynamique. Acta Math. 1890;13(1):A3–A270.
Poincaré H. Sur le problème des trois corps et les équations de la dynamique. Acta Math. 1890;13(1):A262–A479.
Poincaré H. Mmoire sur les courbes définies par une équation différentielle (3e partie). J Math Pures Appl (4e série). 1885;1:90–158.
Poincaré H. Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta Math. 1885;7:40–140.
Poincaré H. Sur un théorème de géométrie. Rend Circ Mat Palermo. Repr. in Œuvres. 1912;6:499–538.
Poincaré HJ. Science et méthode. Paris: Ernest Flammarion.
Group B: George David Birkhoff – Geometric & Ergodic Theory
Birkhoff GD. Proof of Poincaré’s geometric theorem. Trans Am Math Soc. 1913;14:14–22.
Birkhoff GD. An extension of Poincaré’s last geometric theorem. Acta Math. 1925;47:297–311.
Birkhoff GD. A remark on the dynamical rule of Poincaré’s last geometric theorem. Acta Litt Sci Szeged. 1928;4:6–11.
Birkhoff GD. Une généralisation à n dimensions du dernier théorème de géométrie de Poincaré. C R Acad Sci. 1931;192:196–198.
Birkhoff GD. Quelques théorèmes sur le mouvement des systèmes dynamiques. Bull Soc Math Fr. 1912;40:305–323.
Birkhoff GD. Dynamical systems with two degrees of freedom. Trans Am Math Soc. 1917;5:199–300.
Birkhoff GD. Stability and the equations of dynamics. Am J Math. 1927;49:1–38.
Birkhoff GD. Einige Probleme der Dynamik. Jahresber Dtsch Math Ver. 1929;38:1–16.
Birkhoff GD. Proof of the ergodic theorem. Proc Natl Acad Sci USA. 1931;17:656–660.
Birkhoff GD. Collected Mathematical Papers. Vol. 3. American Mathematical Society; New York.
Birkhoff GD. Dynamical Systems. Reprint with Preface by M. Morse and Introduction by J. Moser. AMS; 1966.
Group C: Three-Body Problem & Celestial Dynamics
Birkhoff GD. The restricted problem of three bodies. Rend Circ Mat Palermo. 1915;39:265–334.
Birkhoff GD. Sur le problème restreint des trois corps. Ann Sc Norm Super Pisa. 1935;4:267–306.
Birkhoff GD. Sur le problème restreint des trois corps. Ann Sc Norm Super Pisa. 1936;5:1–42.
Diacu F, Holmes PJ. Celestial encounters: The origins of chaos and stability. Princeton University Press; USA.
Group D: Stability Theory – Lagrange, Dirichlet & Lyapunov
Dirichlet L, J.P.G. Über die Stabilität des Gleichgewichts. J Reine Angew Math. 1846;32:85–88.
Lyapunov AM. Sur la stabilité des figures ellipsoïdales d’équilibre d’un liquide animé d’un mouvement de rotation. Ann Fac Sci Toulouse. 1904;2(6):5–116.
Smirnov VI, Youchkevitch AP. Correspondence de A. M. Liapunov avec H. Poincaré. Cahiers Séminaire Hist Math. 1987;8:1–18.
Leine R. The historical development of classical stability concepts: Lagrange, Poisson, and Lyapunov stability.Nonlinear Dyn. 2010;59:173–182.
Group E: History & Philosophy of Mechanics
Oliveira AR. Lagrange as a historian of mechanics. Adv Hist Stud. 2013;2(3):126–130.
Aubin D, Birkhoff GD. Landmark writings in western mathematics 1640–1940. Vol. 1. Elsevier; USA.
Bromberg JL. The laser in America. MIT Press; Cambridge.
Group F: Ergodic Theory & Modern Developments
von Neumann J. Proof of the quasi-ergodic hypothesis. Proc Natl Acad Sci USA. 1932;18:70–82.
Yoccoz JC. Recent developments in dynamics. Proc Int Congr Math. 1994;1:246–265.
Group G: Limit Cycles, Oscillations & Bifurcation Theory
Andronov AA. Les cycles limites de Poincaré et la théorie des oscillations auto-entretenues. C R Acad Sci. 1929;189:559–561.
Andronov AA, Leontovich EA, Gordon IA, Mayer AG. Qualitative theory of second-order dynamical systems. Vol. 1. Nauka; Russia.
Andronov AA, Leontovich EA, Gordon IA, Mayer AG. Theory of bifurcation of a dynamical system in a plane. Vol. 1. Nauka; Russia.
Bautin NN. On the number of limit cycles appearing with variation of coefficients. Mat Sb. 1952;72(1):181–196.
Liénard A. Étude des oscillations entretenues. Rev Gén Électr. 1928;23:901–902.
Van der Pol B, Van der Mark J. The heartbeat considered as a relaxation oscillation. Philos Mag. 1928;6(38):763–775.
Cartwright ML, Littlewood JE. Chaotic oscillators: Theory and applications. World Scientific; Singapore.
Arnold VI. Bifurcation theory and catastrophe theory. Encyclopedia of Mathematical Sciences, Vol. 5. Springer; Berlin.

