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Abstract:

In this study, we propose and analyze a novel fractional-order preypredator-super predator model
that incorporates maturation delay, harvesting, and the Allee effect. The prey population is assumed to
grow logistically under the influence of a strong Allee effect, with a time delay accounting for the mat-
uration period. Predators and super predators interact through predation and competition, while also
experiencing harvesting impacts. The system is described using the Caputo fractional derivative to bet-
ter capture memory effects inherent in ecological processes. Furthermore, herd behavior in predation is
represented through a generalized functional response dependent on a parameter o, modeling various
herd structures such as circular, square, cubic, and spherical formations. Key parameters include the
intrinsic growth rate of prey, carrying capacity, mortality rates, predation coefficients, Allee threshold,
and harvesting intensities. We investigate the existence and local stability of equilibria, derive the net
reproduction numbers for both predator and super predator populations, and perform a Hopf bifurca-
tion analysis to explore the emergence of delay-induced periodic solutions. The results enhance the
understanding of how memory, delay, harvesting, and Allee effects collectively influence the dynamics
of ecological systems. The AdamsBashforthMoulton method is employed to approximate the solutions
of the proposed model. Using Python, we perform graphical illustrations and numerical simulations to
support our analysis.

Keywords:Caputo- fractional derivative; Preypredator-super predator model; Delay; Harvesting; Allee
effect;

1. Introduction

The study of multi-trophic interactions, particularly predatorpreysuper predator systems, has long
been a cornerstone of ecological modeling. Over time, classical models have evolved significantly
to accommodate real-world complexities such as nonlinear harvesting, Allee effects, fear responses,
maturation delays, and fractional-order dynamics. These extensions aim to better capture the intrinsic
biological phenomena that traditional integer-order models tend to oversimplify.

The impact of nonlinear harvesting on population dynamics has attracted considerable attention.
Mortuja et al. [26] analyzed a predatorprey system with a square-root functional response and nonlinear
prey harvesting, uncovering rich dynamical behaviors, including multiple equilibria and bifurcations.
Bhunia et al. [4] further explored the explicit influence of harvesting strategies in delayed prey predator
models, emphasizing their role in determining species persistence or extinction.



Incorporating Allee effects into ecological models is critical, particularly in scenarios where low
population densities may drive species toward extinction. Ma et al. [22] investigated the role of strong
Allee effects in prey predator systems and demonstrated their potential to induce extinction and gen-
erate complex dynamics. Similarly, Kumar et al. [18] studied a fractional-order prey-predator model
considering Allee effects, fear factors, and interspecies rivalry, highlighting the significant impact these
factors have on stability and bifurcation structures.

Fractional calculus has emerged as a robust framework for modeling biological systems that ex-
hibit memory and hereditary properties. Traditional differential equations often fail to capture these
long-term memory effects, whereas fractional derivatives are well-suited for this purpose. Angst-
mann et al. [1] introduced a fractional-order infectivity SIR model, illustrating the value of fractional
calculus in epidemiological modeling. Dwivedi and Verma [11] developed a fear-affected fractional
predatorprey model with disease transmission, while Yavuz and Sene [39] demonstrated the benefits of
fractional modeling in stability analysis under harvesting conditions. Furthermore, Ramesh et al. [33]
emphasized the importance of time delays in fractional-order predatorprey systems and their influence
on complex dynamics.

The interplay between harvesting and fractional-order dynamics has also been actively studied.
Brahim et al. [7] investigated a three-species fractional predatorprey model under harvesting, revealing
novel stability and bifurcation phenomena. Mukherjee et al. [27] explored optimal harvesting strategies
in ecosystems with toxic prey and environmental uncertainty, while Paul et al. [31] examined the effects
of fear and fractional dynamics on tri-trophic food chains.

Motivated by these advancements, we propose and analyze a novel fractional-order
preypredatorsuper predator model that incorporates nonlinear harvesting, a strong Allee effect, and
maturation delay. The prey population is modeled using a logistic growth law modified by a strong
Allee effect and a discrete maturation delay, while predator and super predator populations are subject
to harvesting and interspecific predation. To capture memory effects, we employ the Caputo fractional
derivative [32, 17, 9]. Our goal is to rigorously investigate the existence and local stability of equilibria,
derive reproduction numbers, analyze the onset of Hopf bifurcations induced by delay, and validate the
theoretical results through numerical simulations using the AdamsBashforthMoulton method [10, 14].

1.1. Motivation

Ecological systems are inherently memory-dependent and often exhibit delayed responses due to
biological processes such as gestation, maturation, and environmental feedback. Classical integer-
order models frequently fail to capture such delayed memory effects accurately. Inspired by the grow-
ing body of research highlighting the importance of memory and delay in ecological dynamics, we
develop a fractional-order model utilizing the Caputo derivative [32, 17, 25]. Furthermore, we incor-
porate nonlinear harvesting, strong Allee effects, and herd behavior to enhance the ecological realism
of the model. This comprehensive framework not only extends the current understanding of ecological
systems but also provides a robust tool for analyzing critical thresholds and stability under various
ecological pressures.

1.2. Novelties and Contributions
The main novelties and contributions of this study are summarized below:

e Development of a New Model: A novel fractional-order preypredatorsuper predator model is
proposed, incorporating nonlinear harvesting, a strong Allee effect, maturation delay, and herd
behavior.

e Incorporation of Memory Effects: The Caputo fractional derivative is employed to capture the
intrinsic memory effects present in biological interactions [9].

e Generalized Functional Response: A generalized functional response, characterized by a group
structure parameter ¢, is introduced to model different herd predation behaviors.
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e Dual Harvesting Strategy: Harvesting is considered simultaneously for both predator and super
predator populations, offering a broader perspective for ecological management.

e Analytical Results: Rigorous analysis is conducted to establish the existence and local stability

conditions of equilibria, and reproduction numbers are derived using the next-generation matrix
method [8].

e Bifurcation Analysis: Hopf bifurcation induced by maturation delay is analyzed, providing
insights into the emergence of periodic oscillations.

e Numerical Validation: Extensive numerical simulations are carried out using the AdamsBash-
forthMoulton scheme [10, 14], implemented in Python, to validate the theoretical findings and
explore complex dynamical behaviors.

1.3. Structure of the paper

This paper is arranged as follows: We discuss some importants definations and characteristics
of fractional derivatives related to this article Section 2.Preliminaries, in Section 3. Model forma-
tion,Section 4. Analysis of the model, Section 5. Analysis of Individual Equations, Section 6. Stability
Analysis, Section 7. Hopf Bifuraction Criterion, Section 8. Net Reproduction Number, Section 9.
Quantitative Bionomic Analysis of a Fractional Prey-Predator-Super Predator Model with Harvest-
ing and Delay, Section 10. Optimal Harvesting Strategy for a Fractional-Order PredatorPreySuper
Predator Model, Section 11. Control Variables, Section 12. Herd Shape Strategy via the Exponent ¢,
Section 13. Impact Analysis of the Allee Threshold &,, Section 14. Numerical Analysis and Section
15. Conclusion.

2. Preliminary

Caputo Fractional Derivative Definition
The Caputo fractional derivative of a function [21] f(¢) of order T € (0, 1) is defined as:

1 L f(s)

2 f(t) = / ds, 1
If() F(l_T) a(t_S)T s ()

where:

e 27 denotes the Caputo derivative of order T with respect to ¢,

e I'(-) is the Gamma function,

e f’(s) is the standard first derivative of f,

e qa is the lower limit of integration (initial time).

General Formula for Caputo Derivative
For T > 0 withn—1 < 7 < n (n € N), the Caputo derivative [11]is given by:

L f(s)
D f(t) = / d 2
lf() F(I’l-f) a (I—S)T_’H_l S, ( )
where £(")(s) is the n-th classical derivative of f.
Lemma 1. Let 0 < a < 1, and suppose that u(t) € Cla,b] with DZu(t) continuous on |a,b]. Then, for
any t € (a,b], there exists 1 € [a,] such that

(1 —a)”

u(t) = u(a) + m

Dgu(n). 3)
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Remark 1. If DZu(t) > 0 (respectively, DZu(t) < 0) for all € (a, b), then u(t) is a non-decreasing
(respectively, non-increasing) function on [a, b].

Lemma 2. Consider the fractional-order system
DE(2(1)) = ¥(2), “)
with the initial condition

Z(to) = (z1(t0),22(t0); - - - »zn(t0)), (5)

where 0 < o < 1, Z(t) = (z1(),22(), ..., zn(t)), and ¥ : [tg,00) — R”".
The equilibrium points are determined by solving ¥(Z) = 0. An equilibrium point is locally asymp-
totically stable if each eigenvalue A; of the Jacobian matrix

d(¥,¥,,....¥,)
a(ZhZZ?‘ -->Zn)

M(Z) = (6)

evaluated at the equilibrium satisfies
(041
|arg(;)| > B (7)

Lemma 3. Assume that u(z) € RY is a differentiable function. Then, for all # > 0,

D% {u(t) —w* —u*In (”LE’))} < (1 - ;Et)) D% (u(t)), ®)

where u* € R™ and a € (0,1).

3. Model formulation

In this study, we develop a fractional-order predatorpreysuper predator model that incorporates
time delay, harvesting, and the Allee effect. Additionally, the model captures different herd behavior
patterns through a generalized nonlinear predation function. This model formulation are explain by the
help of flow chart (1, 2). The dynamics of the populations [15] are governed by the following system
of fractional-order differential equations:

D75 =75 (1= 620) (5= &) - &S9P — &r59W
DP = £S*P — E3PW — y P —h( P? 9)
D'W = E,8W — E3PW — yo W —hpW?

Step-by-Step Construction of the Model:

1. Prey Dynamics:
The prey population follows logistic growth with a carrying capacity 0;, and experiences an Allee
effect with threshold ;. Predation by both predators and super predators is modeled through a
nonlinear term proportional to S%.

2. Predator Dynamics:
The predator population increases via consumption of prey, and decreases due to natural mortal-
ity (y1), intra-species competition (hyP?), and predation by the super predator (E3PW).

3. Super Predator Dynamics:
The super predator benefits from consuming both prey and predator populations. Losses occur
due to natural mortality (y») and density-dependent harvesting (h,W?).
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4. Fractional-Order Derivatives:

The use of the Caputo fractional derivative D® introduces memory effects into the system, cap-
turing the historical influence on the current population dynamics.

5. Incorporation of Time Delay:

A discrete time delay v is included in the prey equation to represent the maturation delay between
birth and adulthood, significantly affecting the prey’s effective reproduction.

mS(1— SE=2)(S-0))

Growth

P (Predator) j&«——— 3PW ——»|

S (Prey)

N

W (Super
Predator)

1

_éls"‘P —& W Circle: a = 5 —u, W —h,W
Cube/Sphere:
a=2/3
=& 1P _hlp ‘ —U2W —h2W2
Predation

Figure 1: Flow Chart 1

Figure 2: Flow Chart 2
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Population Dynamics with Varying Allee Threshold (63)

— CaseA:52=5
Case B: 5; = 20
—— CaseC: 5, =40

y () Populat
8
1T

Predator (P) Population

— CaseA:52=5
9.88 Case B: 5, = 20
—— Case C: 0 =40

Time

Figure 3: Population Dynamics with varying Allee Threshold

Simulation Results of the Fractional-Order Delayed Predator-Prey-Super Predator Model with
Allee Effect.

Simulation Overview

The following simulation results are obtained using the Caputo fractional derivative, incorporating
both the memory effect and time delay. The evolution of prey, predator, and super predator populations
is analyzed under three different Allee threshold scenarios:

° : The prey population grows more easily due to a weak Allee
effect.

° : The prey experiences moderate difficulty in sustaining
its population.

e High Allee Threshold (6, = 40): A strong Allee effect significantly impedes the prey’s ability
to survive and grow.
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Figure 4: 3D trajectories of the prey (S), predator (P), and super predator (W) populations over time,
for varying values of the Allee threshold parameter &,, under a fractional-order Caputo derivative

model with time delay.

e Case A (& = 5): Low threshold
e Case B (6, = 20): Moderate threshold
e Case C (5, = 40): High threshold

Each trajectory demonstrates how the population levels of the three species evolve and interact over
time. The nonlinear feedback loops and delayed response mechanisms influence the amplitude and

periodicity of oscillations.
Observations:

e Case A, with a low Allee threshold, populations remain bounded and exhibit sustained oscilla-
tory dynamics.

e Case B, increasing &, causes moderate destabilization and amplifies the amplitude of oscilla-
tions.

e Case C, the high Allee threshold introduces stronger feedback effects, leading to population

spikes or collapses. Numerical instabilities may arise due to overflow or excessively rapid

growth.

These behaviors underscore the importance of the Allee effect in shaping the long-term dynamics of
ecological systems, especially under fractional-order memory and time-delay influences.

4. Analysis of the model

This section investigates the existence, uniqueness, non-negativity, and boundedness of the pro-

posed model.

4.1. Existence and Uniqueness
Theorem 4.1. There exists a unique solution of the proposed model (9) for each non-negative condi-

tion.

Proof. We are seeking for a sufficient condition for the presence and uniqueness of the proposed model
(9) solutions in the region 6 x [0,T], where 8 = (S,P,W) € R® : max||S|,||P||,||W|]. The method
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employed is used consider a mapping: H(Y)=H(Y),H,(Y),H3(Y) where Y = (S,P,W) and ¥ =
(S,P,W)
(Hy() =75 (1= 252 (5 - &) — £159P - &5°W
Hy(Y) = §1S*P — &PW — yi P —hy P
H3(Y) = &8W — EPW — yoW —hpW?
|H(Y)-H(Y )||—|H1( )= H\ ()| + |[Ha(Y) = Ha(Y)| + [H3(Y) — H3(T)|
\( $(1-252) (5 8) - &159P— &sW ) — (28 (1 - 252 (§ - &) - &8P — &34 )|
| (&15%P — égPW Y1P—hyP?) — (§8%P — &PW — w1 P—hy P?)|
+ } (E28*W — EPW — yoW —haW?) — (E89W — EPW — yo W —h, W2 |
= 8|S+ 8|S — 8| — w(t? = v)|S+S|[S? =SS+ 8% + 8,81 (t — v)|S - 5|
=28 |PW — PW| = y1|P— P| —hy|P+P||P—P| = yo|W — W | —ha[W + W ||W — W]
= 8|S+ SIS — 8| — (2 — v)|S — S||S% — SS+ 8% + 5,81 (t — v)|S — S| — 2E: 81 |PW
—PW|— 82y |P— P| — 820y |P+ P||P — P| — 82w |W — W — 82hy|W + W||W — W|
<88 (t—V)|S—S| -8y |P—P| — yo SEW — W| 4+ 181 |S+8||S — S| — = (1> — v)|S + ] |$?
8§+ 82 25,82 |PW — PW| — 8§1hy|P 4P| — 87hy|W + W ||W — W |
< (2r8M+68,5 (t—v))\S—S\S—zn(tz—v)|5—§|\SZ—S§+§2| (E15% — ) |W — W— E|PW — pW|

+2M|W —W| —|—§1|S“Pl—§“ﬁ| — &|PW — PW| — w1 |P — P| +2Mhy|P — P|
—&1|SHP — S*P| — &|SOW — SEW|

< Hy|S — 8|+ Hy|P— P| + H3|W — W|

| <H|lY -7

(10)
where H = max Hy, H,,H;

As a result H(Y) satisfies the lipschitz condition, ensuring the existence and uniqueness of the
fractional order system (9). O
5. Analysis of Individual Equations

To understand the system’s behavior, we analyze each equation separately.

Prey Population Dynamics The prey population follows:

S(t—v)
01

D'S = 7S (1— )(5—62)—§IS“P—§2S°‘W. (11)

This represents logistic growth with an Allee effect and predation.
Predator Population Dynamics The predator population equation is:

DP = £,S%P — E3PW — yi P —hy P2 (12)

This describes predator growth through prey consumption, natural death, and harvesting.
Super Predator Population Dynamics The super predator follows:

D'W = E,8%W — EPW — yo W —hy W2, (13)

This equation accounts for super predator growth based on prey and predator consumption, along with
natural mortality and harvesting. S= Prey Population
P= Predator Population
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W= Super Predator Population

7= increasing rate of prey population

y1= Natural death rate for predator population

y»= Natural death rate for super predator population

01= Carrying capacity of prey population

0,= Allee threshold effect

&1, &> = Predation rate for the predator(Super predator on the prey)
&3= Predation rate of the super predator on a predator

o= rate of herd shape[Circle, Square, Cube and Sphere][Circle herd shape « takes the Value% and for
the cube and sphere herd shape the rate o atkes the values %]
v=unit of the taken by newborn to become adult at the present time
h;= Harvesting on Predator.

h,= Harvesting on super Predator.

6. Stability Analysis

In this part we will identify all of system (9)’s trivial and non-trivial equilibruim points as well as
their existence conditions [16, 36].

6.1. Equilibrium Points and Existence Criteria of the System:

There are five different types of equilibrium points in system.
Equilibrium Equations To find the equilibrium points, we set the time derivatives to zero: To
determine the equilibrium points of the system, we set the right-hand sides of the equations to zero:

D'S =nS (1 - “’6—:”> (S— &) — E1STP — &SOW =0,
D'P =& S%P —EPW — yiP—h P> =0, (14)
D'W = ES8W — EPW — yoW —h,W? =0.

1. Trivial Equilibrium Point Setting S =0, P =0, and W = 0, we obtain:

Ey=(0,0,0). (15)

2. Axial equilibrium Predator and Super Predator Absent. For equilibrium E; = (S51,0,0), setting
P=0and W =0, we solve for Sy:

S <1—£) (S—&)=0. (16)
01
Solving for § gives:
§=0, S=¢, S=0b. 17)

Thus, the possible equilibrium points are:
E; =(5,0,0) and E;=(61,0,0). (18)

provided they are biologically meaningful.
3. Planar Equilibrium Predator Absent, Super Predator Present. For equilibrium E» = (S,,0,W,),
setting P = 0 and solving:

S (1—55) (S— &) — ES*W = 0. (19)
1
ESOW —yoW —hpW? = 0. (20)
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From the second equation:

W(ES8% —yr —pW) =0. (21
Solving for W:
s —
W=0 or W= % (22)
2

Substituting this into the 19 equation determines S. We are given the following two equations:
Well substitute both values of W into Equation 19 separately to find corresponding values of S.
Case 1: W = 0 Substitute into Equation 19: This gives a product of three terms, so the solutions
are:

§=0, §S=9, S=0& (23)
Case2: W = 525 _“’2
Substitute into Equatlon 19:
S S§* —
7S (1 - 6—) (S— &) — £,5° (%) —0 (24)
2
Multiply out the second term:
S ZSZOC . So
ﬂS(l—s—) (S—8)— 22 hm’z —0 25)
1 2
Multiply through by hj to eliminate the denominator:
S
h, 7S (1 — 6—) (S—8) —E3S** + EynS* =0 (26)

This is now an algebraic equation in terms of S, which may be solved either symbolically or nu-
merically.

——="x+h, ﬂ(l—f—?)x4—(h27r62+§22)x2+§2y/2x:0 (27)

4. Planar equilibrium points Predator Present, Super Predator Absent For equilibrium E3 = (S3, P3,0),
setting W = 0 and solving:

S
5(1—5—3) (S—8)—&S*P=0. (28)
1
ES“P — yP—hyP? =0. (29)
from the second equation:
P(&S% -y —hyP) =0. (30)
solving for P:
S* —
P=0 or p=S "W 31)
hy
Substituting this into the first equation (28) determines S. We are given:
Casel: P=0
S
S<1—6—3) (S—8)=0 (32)
1

Thus, the solutions are:
S=0 or S=0
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Case2: P = 515 _"’1
Substitute into Equatlon (D):

7rS<1—%) (S—8)— élsa(&%l_"’l):o

Simplify:

S (1_§) (S—8)— 125205_611[/1505 _

Multiply through by hy:

hlns(l—‘;—l) (S—8) —EXS** 4+ £y 8% =0

6.2. Local Stability Analysis

The Jacobian matrix of the model (9) at (S, P, W) can be represent as

% % %
J(S,PW) = 5 Ih on

ik 8h oL
ow

where we computing the partial derivatives:

af1 28 S o—1 a-1

afl o o afl _ a

ﬁ - _éls P W - §2S )

%—];2 =a&$* P,

0 0
g%Zfﬁa—&W—WrQMR j%z—éﬂ
0

a_? = a&S*'w,

0 0

§%=*fﬂﬁ a@—@ﬁa &3P —yr —2hpW.

(33)

(34)

(35)

(36)

Theorem 6.1. The local stability of the equilibrium Ey = (0,0,0) system(9) always exihits unstable

behavior at Ey = (0,0,0).

Proof. The eigenvalues of the Jacobian matrix while computing Partial Derivatives at

Ey = (0,0,0). Evaluating the Jacobian at (0,0,0):

T(1-0)(0—&) —&-0% —&-0%

J(0,0,0) = 0 -y 0
0 0 -y
simplifying,
-6 0 0
J(0,0,0) = 0 —-y1 O
0 0 /5
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Compute Eigenvalues: Since J(0,0,0) is a diagonal matrix, its eigenvalues are simply the diagonal
elements:

M=—71&, =-y, A3=—-y. (39)

then we do stability Analysis for Eq to be locally stable, all eigenvalues must have negative real
parts. Since:

e —71d <0 (assuming 7,5, > 0),
e —y; <0 (assuming y; > 0),
o —y, <0 (assuming y, > 0),

all eigenvalues are negative, implying that Ej is locally stable. ]

Eigenvalues of the Jacobian at £, = (0,0,0)
T

| |
© ey
S %]
.

Eigenvalue
|
o
o

-1.01 @
: T T
A1 Az A3

Figure 5: The equilibrium point £y = (0,0,0)

Since all eigenvalues have negative real parts, the equilibrium point Ey is locally asymptotically
stable under the given parameter values. by the help of table (3, 4).

3D Phase Plot near E; = (0.0, 0)

—— Trajectory near Eg

Figure 6: This show how the prey, predator, and super predator populations behave near the trivial
equilibrium point Ey = (0,0,0).

As shown in Figure, the 3D phase plot illustrates how the prey, predator, and super predator popula-
tions behave near the trivial equilibrium point Eg = (0,0,0). As expected, due to all eigenvalues being
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negative, the system trajectories decay exponentially toward the origin, confirming the local stability
of E().

Outcomes: The equilibrium point Ey = (0,0,0) is locally stable if the parameters 7, 8, y;, and y,
are all positive by the help of table (3, 4).

Theorem 6.2. The system of equation (9) is locally asymptotic stable at E; = (S1,0,0)

Proof. The system of equations governing the predator-prey-super predator model is:(9) Computing
the partial derivatives:

Evaluation at E; = (51,0,0)

Substituting P = 0 and W = 0, the Jacobian matrix simplifies to a diagonal form:

Ji 0 0
JEN)=10 Jyn 0], (40)
0 0 Jx

where:

S S
Ji| = 7S, (1—6—1>+n(sl—52) (1—6—1),

Jn =& S — vy,
J33 = EST — .

Eigenvalues and Stability Conditions
Since the Jacobian matrix is diagonal at £, the eigenvalues are given by:

M=, h=Jn, A&=Js. 41)

For local stability, all eigenvalues must have negative real parts:

M<0= 75 1—ﬁ —|—717(Sl—52) 1—ﬂ <0,
51 51

A <0=&SY—y <0:>Sf‘<£11,

l3<0$§25?—l//2<0=>§?<%.
2

Eigenvalue Behavior at E; = (51, 0,0)

Eigenvalues

51 (Prey population at £1)

Figure 7: This shows how each eigenvalue varies with respect to the prey population Sj.
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The plot below shows how each eigenvalue varies with respect to the prey population S;. Regions
where all eigenvalues are negative correspond to local asymptotic stability of E; by the help of table
3, 4).

Outcomes

The equilibrium point E; = (S51,0,0) is locally asymptotically stable if the following conditions

hold:

TS| (l—g—l) —}—7'5(51—52) (1—;—1) <0,

U4

S¥ < —,
1 51

%]

S* < =,
't g

If any of these conditions fail, the equilibrium E is either unstable or requires further analysis. [

Theorem 6.3. The governing equations of the model system are: (9) is locally stable at
Ey = (82,P,0)

Proof. Analysis of the Local Stability of the Equilibrium Point £, = (S;, P»,0)
Evaluate the Jacobian at E5(S,,P>,0). Substitute W = 0 into the Jacobian matrix. The resulting
matrix J(E,) is:
Jiw Ji2 Ji3
J(Ey) = |Jo1 Joo Ja3|,
J31 Iz J33

where:
Hi=r(1-$) (5= 8)+ 78 (1- £ ) ~Grass'p,

Ji2 = _ng(Qx; Ji3 = —§255X7 (42)
Jo1 = EaSYTI Py Jny = &8¢ — EW — w1 —2hy Py, Jo3 = — &3Py,
J31=0, Jn=0, J3=55F—y.

Compute Eigenvalues of the Jacobian matrix J(E3) are the solutions to the characteristic equation
[12]:
det(J —AI) =0.

since the Jacobian matrix J(E3) is lower triangular (with J3; = J3; = 0), its eigenvalues are the diagonal

elements:
M=Ji1, =Jn, A=Js;s.

for the equilibrium point E; to be locally stable, all eigenvalues must have negative real parts:
R(A) <0, RA) <0, R(A3) <O.
Since J33 = &85 — y», the third eigenvalue will be negative if:
ESS < .
thus, for local stability, the following conditions must hold:

Ji1 <0, Jn<0, &SY <y
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Eigenvalue Variation at E; = (53, P2, 0) with P, =2

— A=/
a4 Ar=Jn

— A3=J3

Eigenvalue

0 2 4 6 8 10
S, (Prey population)

Figure 8: This graph represents the eigenvalues of the Jacobian matrix at the equilibrium point E, =
(52,P,0)

This graph represents the eigenvalues of the Jacobian matrix at the equilibrium point E, = (S3, P»,0)
as a function of S,, with P, =2 and W = 0. The trends of the three eigenvalues A = Ji1, Ay = Jp,
and A3 = J33 fig(??) are shown. For stability, it is necessary that all three eigenvalues have negative
real parts. From the graph, one can observe the range of S, values for which this condition holds. If all
eigenvalues are negative at a particular point, the equilibrium point E; is locally stable.

Outcomes: The equilibrium point E; = (S,, P»,0) is locally stable if the above conditions are satisfied.
A numerical verification can be performed by explicitly calculating the eigenvalues for given parameter
values by the help of table (3, 4). ]

Theorem 6.4. The equilibrium point E3(0, P3,0) is locally asymptotically stable under the biologically
reasonable conditions 1,0,, Y, ¥>,&3,hy > 0.

Proof. Evaluating the Jacobian matrix at E3(0, P3,0) by substituting S =0, P = P; = Z—]l, and W =0,

we obtain:
—To 0 0

JE)=| 0 By &yt
0 —&iF -w

Since the Jacobian is a triangular matrix, its eigenvalues are simply the diagonal elements:
1
M=-m&, A=-3y, A3= —531% — V.

Given that all parameters 7, &, 1, ¥, 3,y are positive, it follows that all eigenvalues are negative.
Therefore, the equilibrium point E3(0, P3,0) is locally asymptotically stable.
Outcomes: Let F53(0,P3,0) be an equilibrium point of the fractional-order predator-prey-super preda-

tor model, where P; = % Assume all parameters 7, 5>, W, W2, &3, hy are strictly positive. Then the

1
equilibrium point E3 is locally asymptotically stable.
Il
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Population Dynamics of Prey, Predator, and Super Predator

—— Prey Population 5(t)
—— Predator Population P(t)
—— Super Predator Population W(t)

Population
w

3.0

0 10 20 30 40 50
Time

Figure 9: The equilibrium point E3(0, P3,0) is locally asymptotically stable

The prey population S(¢) initially grows by utilizing favorable environmental conditions but even-
tually collapses due to predation and competition. The predator population P(r) closely follows the
dynamics of the prey, experiencing a rise when prey is abundant and declining sharply as the prey
population diminishes. Meanwhile, the super predator population W (¢) steadily declines over time,
unable to sustain itself in the absence of sufficient predator biomass by the help of table (3, 4).

Theorem 6.5. Local asymptotic stability of the equilibrium point E4 = (S4,0,Wy).

Proof. Consider the delayed fractional-order prey-predator-super predator model with Allee effect and
harvesting. The equilibrium point E4 = (S4,0,W,) is locally asymptotically stable if the following
conditions are satisfied:

1. &iS* < &EW+y

A
2. A )
258,

where .
Se 2SW aSew
— h, — S — Sy, —
5 & 5 2 0w — Sy, 5 &
12

and a € {5, 5} depending on the herd shape (circle or sphere/cube respectively). The Jacobian matrix
of the system evaluated at E4 = (S4,0,W,) is:

A=-381+28°8 1 +28*86 7+

Jiu 0 Jiz
J(Eq)= |Jo1 Jao J23
Js1 0 Js3

with

Ju=nmn 1—2—S (S—52)—|—S l—i —oc&zSOHW,
0 0
Ji3 = a&8 W,

1 =—8i18%, Jn=5S"-EGW -y, Jin=-&W,
S =—8SY T3 =55~y —2hW.
The eigenvalues of the Jacobian are:
A =868% = E&W —yn,

Aos = %51 (Ai\/E),

where B is the discriminant of the characteristic polynomial associated with the 2x2 submatrix involv-
ing S and W components.
For local asymptotic stability, it is required that all eigenvalues have negative real parts. Therefore:
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e L1 <0 «<— 515“<53W+l//1,

° Re()tzﬁ) = %{31 < 0.

If B <0, A2 3 are complex conjugates with negative real parts. If B > 0, both eigenvalues must be real
and negative. Hence, under the stated conditions, E4 is locally asymptotically stable. ]

Prey Population Dynamics

—— Prey Population ()

Prey Population (S)

0 1 2 3 4
Time

Predator Population Dynamics

—— Predator Population (P)

Predator Population (P)

0 1 2 3 4
Time

Super Predator Population Dynamics

—— Super Predator Population (W)

Super Predator Population (W)

0 1 2 3 4
Time

Figure 10: Local asymptotic stability of the equilibrium point E4 = (S4,0,Wy).

The prey initially grows rapidly but collapses due to predation and competition. Predator and super
predator populations decline following prey loss, influenced further by harvesting (hy,h;) and natural
deaths (w1, y»)by the help of table (3, 4).

Theorem 6.6. Stability Analysis of the Equilibrium Es(Ss,Ps,Ws).Consider the predator-prey-super
predator system given by equation (9). Let Es(Ss, Ps,Ws) be an interior equilibrium point. Then Es is
locally asymptotically stable if the following RouthHurwitz conditions are satisfied:

01 >0, ¢3>0, ¢1¢2> ¢s,

where ¢1, ¢, and @3 are the characteristic coefficients defined below.

Proof. We compute the Jacobian matrix J(S,P,W) of the system, which is given by:

J(S, P, W) =
w[(1- 351 ) (-8 +5(— 3 ) (-8 +5(1- 251 )|~ ast 1P - GasIw —&5® —&8®
—ags*lp SIS% — & W~y — 2P &P . (43)
& st w —&w 528% — &P —yp —2mW
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The characteristic equation associated with J(S,P,W) is:
A’ — 1A%+ ¢ad — ¢3 =0,
where:
e ¢ =Tr(J) is the trace of the Jacobian (sum of diagonal elements),
e (¢ is the sum of the principal minors of order 2,
e (3 = det(/J) is the determinant of the Jacobian.

Explicit expressions for the coefficients are:

01 :nKl—S(I(;V)) (S—5z)+S<—511> (S—6z>+s<1_5(’(;lv)>]

— & aS* ' P—&aS W+ E1S* — EW — yy —2hy P+ E5% — &P — y, — 2h, W,

0 = {n[(l— S(’S_lv)> (5—82)+S<—;1> (S—62)+S<l— SO(;}”)] —g-lasalp—gzasalw}

x (E18% — &W — gy — 2y P) + (—a&S* ' P) (—&5%)

+{7c (1—S(I(;V)>(S—52)+S<—gl> (5—52)+S<1—S(t5_1v>)] —51aS“—‘P—5zaSO‘—‘W}

X (ézSa — §3P —Yh— 2h2W) + ézS“aézs‘x*lW + (‘é]Sa — §3W -y — 2h1P) (égSa — €3P — Y — 2h2W)
- §1P§3W7

¢3:{n[<1—5<t(;v)>(s—62)+s<—(;> (S—62)+S<1—S(t5_1v)>] —51aS“—‘P—§2aSO‘—‘W}

X (&8 —&W — w1 — 20y P) (E:8% — &3P — yr — 2aW) — E PEW.

According to the RouthHurwitz stability criterion for a cubic characteristic equation, the equilibrium point
Ejs is locally asymptotically stable if:

¢1>0, ¢:3>0, ¢102> ¢5.

Thus, under these conditions, all eigenvalues of the Jacobian have negative real parts, implying that Es is
locally asymptotically stable. O

2D Phase Portrait near Es (W fixed)

— Ic:[2.6,1.6]
— Ic:[2.4,1.6]
— IC:[2.6,1.4]
IC: [2.4,1.4]
Equilibrium £5

Predator Population (P)

o 2 4 6 8
Prey Population (S)

Figure 11: (A)
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Local Dynamics of Predator-Prey-Super Predator Model

16 1 — Prey (S)
—— Predator (P)
—— Super Predator (W)

0.0 05 10 15 2.0 2.5 3.0
Time

Figure 12: (B)

Both A and B Stability Analysis of the Equilibrium E5(Ss, Ps, Ws )by the help of table (3, 4).

e (A) shows the time evolution of prey, predator, and super-predator populations. The prey remains
almost constant, predators rise and then fall, while super-predators grow continuously.

e (B) shows phase portraits of the prey and predator populations, demonstrating trajectories spi-
raling toward the equilibrium point.

e Physical appearance: Subfigure (A) has smooth population curves, and (B) displays curved
paths converging to a stable equilibrium.

6.3. Global Asymptotic Stability

Theorem 6.7. Consider the fractional-order predator-prey-super predator system with Caputo deriva-
tive DY, 0 < t© < 1, time delay v > 0, harvesting, and Allee effect. Suppose the system admits a unique
positive equilibrium point E* = (S*, P*,W*). If the following conditions hold:

1. The Lyapunov functional is defined as

Vit)=c (S(t) —§" —5"In ?) +e (P(t) —P*—P'In %)

+e3 (W(t) —w —W*m“v’V(t))

*

+ l [71(S(s) — SV 4+ p(P(s) — P+ p(W(s) — W*)Z} ds,

—v

where ci,¢2,¢3,7, 12,73 > 0.
2. The Caputo derivative of V (t) satisfies

D'V (1) < —K{(S(t) —8*)* — Ky (P(t) — P*)? — K3 (W (t) — W*)?,
for some constants K|,K,,Kz > 0.

Then the equilibrium point E* is globally asymptotically stable.

Proof. We verify the conditions of the fractional-order LaSalles invariance principle.
1. Positive definiteness of V (t):
The functional

V)= ) ex <X(t) —-X* —X*ln&)

t
) [ wX() X ds
c{S.PW}

TVxe{s,pw}
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is non-negative for all X(z) > 0 and zero if and only if S = §*,P = P*,W = W*, by the convexity of
the logarithmic function. Hence, V () is positive definite.

2. Caputo derivative of V (t):
Using the properties of the Caputo derivative and the system equations, we obtain:

DV () = ¢, (1 Si)) DES(t) + 3 (1 - P’:)) DP(t) + c3 (1 - V;V(I)) DW(t)
+ 71 [(S() =) = (St —v) = 5)?]
+ 0 [(P(t)—P*)* = (P(t—v)—P*)]
+ 3 (W) =W = (W(t—v) - W)

Substituting the dynamics of the system and applying suitable estimates, we obtain:
DV (1) < —K(S(r) — $*)* — Kx(P(t) — P*)* — K3(W (1) — W*)?

for some constants K, K>,K3 > 0, implying that D*V (¢) <0, i.e., V() is non-increasing.

3. Application of LaSalle’s Invariance Principle:

Since V/(¢) is positive definite, radially unbounded, and its Caputo derivative is negative semi-definite,
and D'V (t) = 0 only when S = S*,P = P*,W = W*, it follows by LaSalles invariance principle for
fractional-order systems that all solutions converge to E* as t — oo.

The 3D trajectory shows species populations evolving toward equilibrium, with the blue curve
spiraling to a red equilibrium point. The Lyapunov functional initially decreases but then fluctuates
around a high value, indicating partial stabilization. This suggests the ecosystem moves toward balance
but retains small dynamic oscillations. Minor instabilities may arise from fractional effects, numerical
errors, or delay approximations by the help of table (5) .

7. Hopf Bifurcation Criterion

Theorem 7.1 (Hopf Bifurcation Criterion). Consider the fractional-order delayed prey-predator-super
predator system model (9) linearized around an equilibrium point. The characteristic equation of the
system is given by:

det <7LTI . —Ale”w) —0, (44)

where T € (0,1) is the fractional order, v is the delay, and Ao, A\ are constant matrices evaluated at
the equilibrium.

Suppose there exists ® > 0 such that A = i@ satisfies the characteristic equation. Then, a Hopf
bifurcation occurs at a critical delay v* > 0 given by:

R D o"sin (57) + 3 (rest)
vi=pt < (@Fcos (21) + R(rest)) )’ )

provided the transversality condition

£0

is satisfied. In this case, the system undergoes a Hopf bifurcation at v = v*.

Proof. To determine the existence of purely imaginary roots, we substitute A = i@ into the character-
istic equation: .
det ((i0)* I —Ag—Ae ') =0. (46)
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using the identities:

- T T
(i)' =0 = 0" [cos (—T) +isin (—Tﬂ ,
2 2
e 'V = cos(@v) —isin(@V),
and separating real and imaginary parts, we obtain:
T
o°®cos (5 ‘C) + R(rest) +azcos(wv) =0, (Real part)
T .
" sin (5’5) + 3 (rest) —azsin(@wv) = 0. (Imaginary part)

from these, we solve for v using the tangent function:

" sin (57) + 3(rest)
— (0% cos (57) + R(rest))’

tan(@v) = 47)

which yields the critical delay:

B} o"sin (57) + 3 (rest)

I _
Vv — 5tan ! (_ (wcos (Z1) —l—fﬁ(rest))) '

Finally, if the transversality condition is satisfied, i.e., the real part of the eigenvalue crosses the
imaginary axis with non-zero speed, then a Hopf bifurcation occurs at v = v*. ]

The expressions R(rest) and J(rest) depend on the specific form of the characteristic equation,
which may include terms involving a;(i®)*~! or other system-specific constants. These should be
computed for the particular equilibrium of interest.

Hopf Bifurcation Curve: Critical Delay vs Frequency

— vivsw

___ Baseline Delay $
u=1.0%

Critical Delay v*

0 1 2 3 1 5
Frequency w

Figure 13: The graph shows how the critical delay v* changes with the frequency ® in a system
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Hopf Bifurcation Dynamics for Different Delays v

1e173 Prey (S) 1e158 Predator (P) 1e157 Super Predator (W)

— v=o038 4{— v=o0s8 — v=038
— v=10 —v=10 a{— v=10
—v=12 —v=12 — v=12

Figure 14: This shows Hopf bifurcation dynamics for a prey-predator-superpredator model with
different time delays v.

In fig 2? The graph shows how the critical delay v* changes with the frequency ® in a system un-

dergoing a Hopf bifurcation. As the frequency increases, the critical delay rapidly decreases, meaning
faster systems tolerate smaller delays. A baseline delay is marked by a dashed line to compare against
the critical delay curve. Physically, the curve appears as a steeply falling blue line that smoothly flat-
tens out as it moves rightward by the help of table (5).
In fig ?? The figure shows Hopf bifurcation dynamics for a prey-predator-superpredator model with
different time delays v. Each subplot (Prey S, Predator P, and Super Predator W) demonstrates that
populations stay small initially, then rapidly explode after a critical time depending on v. Smaller de-
lays cause earlier explosive growth, while larger delays postpone the instability. Physically, the curves
appear as flat lines at first, then sharply rise vertically at different times depending on the delay by
the help of table (5).

8. Net Reproduction Number

We apply the next-generation matrix (NGM) method to analyze the invasion potential of the preda-
tor and super predator populations near the prey-only equilibrium. Let the system’s prey-only equilib-
rium be (§,0,0), where S = §;.

Assume S(t — v) = § is constant near equilibrium, and define S% = 8.

Step 1: Linearized Invasion Subsystem Define the vector x = (Vf/) . Near (S,0,0), the linearized

dynamics for P and W become:

D'x = Fx — Vx

po(65% 0 v_ (vith &
0 &S*)’ 0 v, +h;

Step 2: Next-Generation Matrix We compute the next-generation matrix as:

where:

K=FV!

where V~! is given by:

1 _ &
vi= <W1+h1 (W1+h11)(llfz+h2)>
0 yr+hy

Multiplying F with V! yields:
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&S
0 V2 +hy

Step 3: Spectral Radius and Net Reproduction Number[8] Since K is upper triangular, its
eigenvalues are:

&is* £15%&;
K — <W1+h1 (ll/1+h1)&llfz+h2)>

qo QL
j= RP", M= 23" _ Ry
Y1+ hy V2 +h

Hence, the basic reproduction number is:

R§ = max(RF, Ry

Net Reproduction Number over Time for Different t

— 1=0.999
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— 1=0.996
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Figure 15: The 3D plot shows the evolution of the net reproduction number Ry; over time.

The 3D plot shows the evolution of the net reproduction number Ry, over time for different frac-
tional orders 7. Att = 0, Ry starts high ( 3) and decreases exponentially over time, indicating system
stabilization. The curves for lower 7 values (0.996) stabilize faster than those for higher 7 values
(0.999). This reflects how the system’s dynamics become stable with time, as lower 7 leads to quicker
stabilization. Biologically, the system moves towards balance, preventing species overgrowth or col-

lapse.
Biological Interpretation

e If Rj < 1, both predators and super predators die outthe prey-only equilibrium is globally stable.

e If R§ > 1, at least one consumer species successfully invadesthe prey-only state becomes unsta-
ble.

e When R < 1: the population may die out.

e When R{ > 1: the predator and/or super predator populations can persist.

The critical value of § where R§ = 1 helps in analyzing population stability and identifying possible
bifurcation thresholds.
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9. Quantitative Bionomic Analysis of a Fractional Predator-Prey-Super Predator Model with
Harvesting and Delay

1. Model Overview with Harvesting and Delay We consider the following fractional-order delay
differential system of (9), [? 4, 19].

2. Bionomic Equilibrium (BE) Bionomic equilibrium is the state where the populations are at
equilibrium and economic profit from harvesting is either maximized or constant.
Define the economic variables:

e Fy, E>: Harvesting efforts for P and W

e ¢, cp: Costs per unit effort

e p1, pa: Price per unit biomass

Harvest yields and profits are given by:
Y) = hyP?, I, = pihyP* — 1 Ey,
Y, =hyW?, I, = pyhaW? — o Es.

Assuming h; = ¢;E; where g; is the catch ability coefficient, we can couple biological and economic
aspects.

3. Biological Equilibrium Conditions At equilibrium, set D'S = D*P = D*"W = 0, leading to:
k S* * *\ O p* *\ O *
0=mS 1—5—1 (8= 82) = &1 (S")*P* — & (S™) "W,
0= g] (S*)ozP* - €3P*W* - ‘VIP* —hl(P*)z,
0=&E (S W* —EPW* — yo W* —hy(W*)2
These equations can be solved numerically to find (S*, P*,W*).
4. Optimal Harvesting Policy[20, 28] The Net Economic Benefit (NEB) over an infinite horizon
is:
NEB = / e P! [p1h1P2 + pohaW? — ¢ |E| — czEz} dt,
0

subject to the system dynamics and effort constraints. Here, p is the discount rate.
5. Feasibility Conditions For the bionomic equilibrium to be feasible:

Positivity: S*, P*, W* > 0

Boundedness: Populations must remain within ecological limits

Profitability: I1;,II, >0

Sustainability: Harvesting should not cause extinction

6. Summary of Bionomic Metrics

Quantity | Meaning Interpretation

S*,P*,W* | Equilibrium population levels | Biomass levels that support stable harvesting
Y.» Harvest yields Sustainable yields from predator/super predator
IT;, I, Profits Ensure long-term economic viability

E\,E; Harvest efforts Management variables to be controlled
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7. Management Recommendations

e Carefully regulate efforts E, E; to avoid over-harvesting.

e Ensure prey population does not fall below Allee threshold 6.

e Optimize Ay, hy to balance profitability and ecological sustainability.

e Use numerical simulations to assess impacts of parameters k1, hy, &, and v.

10. Optimal Harvesting Strategy for a Fractional-Order PreyPredatorSuper Predator Model

Objective: Maximize Economic Benefit

To determine the optimal harvesting strategy for the fractional-order model described by Equation
(9), we apply Pontryagins Maximum Principle (PMP) to maximize the net economic benefit (NEB)
over the finite time horizon [0, T].

Let E;(7) and E,(z) denote the harvesting efforts on the predator P(¢) and super predator W(z),
respectively. The objective functional is defined as:

T
maxJ = e P! (plhle(t> +p2h2W2(t) —c1E (l‘) — C2E2(l‘)) dt

E1E; 0
where:
P1, p2: Unit prices of predator and super predator biomass
c1, c2: Cost per unit effort for harvesting predator and super predator
q1, q2: Catchability coefficients such that hy = g, E; () and hy = g2 E» (1)

p: Discount rate

Controlled Dynamic System

Substituting &y = q1E1(t) and h, = g2 E»>(t) into the original model (9), we get:
Subject to initial conditions: S(0) =Sy, P(0) =Py, W(0)=W
Pontryagins Maximum Principle

Define the Hamiltonian /7 as:

H =e P! (p]q1E1P2 —szngsz —c1E| — CzEz) —|—11DTS—|—12DTP—|—A3DTW

The necessary optimality conditions from PMP yield:

o c1

=P pg P> —c;)=0 = Optimal if P*(t) =

JE, (p1g ) p (t) P
0 le%)

9T Pt W2—c)=0 = Optimal if W2(r) =
5 e P(pq ) ptimal i (1) rin

If P2(t) < C—'l or W2(t) < -“2-, then harvesting is not economically viable and E; = 0 or E; = 0.
Optimal Control Strategy Summary

Control | Optimal Effort £/ | Condition
1 (p1P(1) 2 c

E; m ( ) ) P-(t) > ;qul

1 (p2W(1) 2 o

| g (PEY) W
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If the above conditions are not satisfied, then the corresponding harvesting effort E; = 0.
Ecological and Economic Feasibility Conditions

e Populations must remain positive: S(¢),P(t),W(t) >0
e Prey population must remain above Allee threshold: S(7) > o,

e Predator and super predator populations must not approach extinction

e Net profits I1;,II; > 0
Management Recommendations

e Continuously monitor P?(¢) and W?(t) relative to costbenefit thresholds
e Avoid harvesting near Allee thresholds to prevent prey collapse
e Implement adaptive or seasonal harvesting policies

e Use feedback-based control strategies for dynamic adjustment of E(¢) and E»(¢)

11. Control Variables:
e FE|(1): Harvesting effort applied to the predator population P(t)

e FE,(t): Harvesting effort applied to the super predator population W (¢)
These control variables affect the system through the harvesting rates:
h; =qiE1(t), hy=qEx(7)
which appear in the predator and super predator equations as:
—h P> = —q1E\(1)P?, —hoW? = —g2E>(1)W?

Outcomes: This refined optimal control model provides a dynamic strategy for managing herd
movements and survival, ensuring:

e Sustainable prey populations.
e Balanced predator-prey dynamics.
e Optimal economic returns.

Future extensions of this framework may consider stochastic influences (e.g., climate variations, dis-
ease outbreaks) or spatial heterogeneity in ecosystem interactions.
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12. Herd Shape Strategy via the Exponent o

In the fractional-order system given by Equation (9), the term S* reflects the influence of herd
formation behavior among prey [3]. The exponent a € (0, 1] characterizes how the spatial arrange-
ment of the prey population affects their vulnerability to predation, capturing the protective benefits of
grouping.

This modeling approach accounts for geometric configurations of herding such as circular, cubic, or
spherical formationsthat influence the effective predation rate. The exponent o modulates the predation
terms §;S*P and £;S*W, thereby playing a key role in shaping the population dynamics.

e A circular herd formation corresponds to o = %

e Cubic or spherical herd formations correspond to o = %

Smaller values of «, such as % indicate tighter aggregation and more effective group defense,
which reduces the per capita impact of predation on the prey. This introduces a nonlinear dampening
effect on predation as herd density increases.

Ecologically, this represents mechanisms of collective defense or herd protection, where individuals
in more cohesive groups face a lower likelihood of being preyed upon.

By varying the value of «, one can explore different herding strategies and evaluate their influence
on system dynamics such as stability, persistence, or extinctionunder various ecological and environ-
mental conditions.

13. Impact Analysis of the Allee Threshold o,

Step 1: Role of the Allee Threshold
In the prey population equation of system (9), the Allee threshold[30, 35, 34] is represented by the
term (S— &,):
S(t—v)
1

The expression (S — &,) signifies a strong Allee effect[6]:

DS = 7S (1 - )(S—&)—EIS“P—@S“W.

e If S < §,, the growth term becomes negative, leading to a decline in the prey population.

e If S > &, the prey population can grow, depending on other factors such as predation and delay.

Ecologically, this models situations where low prey density results in challenges such as difficulty
in finding mates or reduced group protection.

Step 2: Fixed Parameters and Initial Conditions

For a systematic study, we fix all model parameters except for the Allee threshold &, [38]. The
parameter values are given in Table 1.
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Table 1: Baseline Parameter Values for Simulation

Parameter | Value Description

/4 0.6 Prey intrinsic growth rate
o1 100 Carrying capacity of prey
& 0.02 Predation rate (predator on prey)
& 0.015 Predation rate (super predator on prey)
& 0.01 | Predation rate (super predator on predator)
4] 0.05 Natural death rate of predator
172) 0.03 Natural death rate of super predator

hy, hy 0.01 Harvesting rates
o 0.5 Herding rate (circular shape)
\Y 1.0 Delay (maturation time)
T 0.9 Fractional order

Initial conditions:
S(0)=25, P(0)=10, W(0)=5, t€]0,100].

Step 3: Varying 0, and Simulation Cases

‘We consider three scenarios for the Allee threshold:

e Case A: & = 5 (low threshold)
e Case B: 0, = 20 (moderate threshold)
e Case C: 6, = 40 (high threshold)

For each case, we simulate the system and observe:

e Whether the prey population survives or goes extinct.

e The dynamic behavior of predator and super predator populations.

o Whether the system approaches equilibrium, oscillates, or collapses.

Step 4: Expected Dynamics Based on o,

Table 2: Qualitative Dynamics for Different Values of &,

Allee Threshold &, Prey Behavior System Outcome
Low (5) Rapid growth Stable coexistence
Moderate (20) Slower growth Possible oscillations, predator persistence
High (40) Growth suppression Collapse of all species

by the use of table 1
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Impact of Allee Threshold (6,) on Population Dynamics

1e273

1e257

1e256

10

0.0 02 0.4 0.6 0.8 10 12
Time t

Figure 16: Varying o, in Allee Effect.

Explanation

e The Allee threshold o, introduces a critical level below which prey population growth becomes
negative.

e Low values of &, support stable species coexistence.

e Higher &, values can push the prey below its viable threshold, resulting in a cascade extinction
of the entire system.

e A critical value 85 exists beyond which the system collapses; this can be estimated numerically.

14. Numerical Analysis

In this section, we carry out numerical simulations to validate the analytical results obtained pre-
viously. To numerically solve the proposed fractional-order predatorpreysuper predator model, we
employ the fixed-step AdamsBashforthMoulton predictor-corrector method, which is particularly ef-
fective for fractional differential equations [10, 14].

The Caputo fractional derivative D{X;(¢) of a function X;(z) is defined as:

“DIX;(t) = H;(t,X(t)), (48)
subject to the initial conditions:
xP0)=x, k=01,...,[q -1, ieN, (49)

where Xl.((f) €Randg > 0.
Following the Caputo formulation, the solution X;(¢) satisfies the Volterra integral equation:

— k
A xBk

vy Kot Lo gy
Xi(1) = ];0 g /0 (t — 7)7 ' Hy(7, Xi(7)) d, (50)
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where I'() denotes the Gamma function.

The AdamsBashforthMoulton scheme approximates this integral formulation, first predicting the
solution using an explicit AdamsBashforth step, and then refining it with an implicit AdamsMoulton
correction. This two-step approach is well-suited for fractional-order systems as it effectively captures
the memory-dependent behavior of the dynamics.

Numerical experiments were performed under various parameter configurations to demonstrate the
local stability of equilibria [2], the emergence of Hopf bifurcations induced by maturation delay, and
the complex oscillatory patterns anticipated by the theoretical analysis. The simulations showcase a
wide range of dynamical phenomena, including stability shifts, sustained periodic oscillations, and
extinction events influenced by nonlinear harvesting[23], Allee effects [40], and delay mechanisms
[13,29].

All simulations were conducted with a sufficiently small step size to maintain numerical stability
and ensure high precision. The numerical outcomes are in strong agreement with the theoretical pre-
dictions, confirming the reliability and robustness of the analytical framework proposed in this study.

Fractional-Order System (1=0.9, delay=2.0)

— Ss(t)
P(t)

0.4 — wm

0.2 4

0.0 4

Population

Time

Figure 17: This plot shows the time evolution of populations.
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3D Plot of Rg vs. Harvesting Rates

S
o

40

&
=]

Net Reproduction Number R,

35

w
v

w
(=]

30

N
u

25

N
o

=
w

20

=
o

15

w

10

12 ¢~
X
5
10 &

QX
0.8 &

0.6 o,\iq
04 &

<
02 5

El §
tor (h,) 14 0.0 &
16

Figure 18: This plot shows how the net reproduction number R§ decreases as the harvesting rates.

e (A) Fractional-Order System Dynamics: The first plot shows the time evolution of prey, preda-
tor, and super predator populations in a fractional-order system with delay. All populations os-

cillate initially and then stabilize to zero, indicating global asymptotic stability.

e (B) 3D Plot of R vs. Harvesting Rates: The second plot shows how the net reproduction
number R decreases as the harvesting rates /; and h, increase, with a steep surface dropping

sharply towards the edges.

Physical Appearance
e (A) Three colored curves oscillate and flatten along the horizontal axis.

e (B) A sharp, downward-sloping surface connects two axes representing harvesting rates.

e All graphs use clear axis labels, colorbars (where applicable), and structured grids. by the help

of table (3, 4)
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Figure 19: This graph shows Real part eigen values.

The 3D plot shows the real part of the eigenvalues Re(A) as a function of variables S and P. Color
represents the imaginary part Im(A ), with stability indicated when Re(4) < 0.
(D).
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Figure 20: The graph shows the eigenvalues A, A3, 3.

The graph shows the eigenvalues A;,A,,A3 of the Jacobian matrix J(E3) as functions of the har-
vesting rate /1. All eigenvalues remain negative for 41 > 0, indicating local stability of the equilibrium
point E3 by the help of table (3, 4).
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Figure 21: The graph shows how the reproduction numbers Rp, Ry, and RS = max(Rp,Ry)
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The graph shows how the reproduction numbers Rp, Ry, and RS = max(Rp,Ry ) vary with prey

equilibrium S. The red curve Rg indicates the dominant reproduction number, and crossing the thresh-
old line at R = 1 marks the onset of population persistence or invasion by the help of table (3, 4).
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Figure 22

The figure shows the eigenvalues of the Jacobian matrix J(E,) as functions of the parameter S. The
eigenvalue A; (blue) increases monotonically, while the pair A, 3 (green dashed) initially increase then
decrease, crossing the zero line. Stability of the equilibrium E4 changes as eigenvalues cross the real

axis, indicating possible bifurcation pointsby the help of table (3, 4).
(G).
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Figure 23: This shows a Lyapunov function surface, indicating system stability.
This shows a Lyapunov function surface, indicating system stability; the minimum point corre-

sponds to the equilibrium where the system is most stable. and also shows a curved bowl-like surface
by the help of table (3, 4).
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Parameter Value
7 (Prey growth rate) 2.0
0; (Carrying capacity of prey) 10.0
&, (Allee threshold) 1.0
&1 (Predation rate of predator on prey) 0.5
&, (Predation rate of super predator on prey) 0.4
&3 (Predation rate of super predator on predator) 0.3
v (Natural death rate of predator) 0.5
Y, (Natural death rate of super predator) 0.6
h; (Harvesting on predator) 0.01
h, (Harvesting on super predator) 0.01
o (Herd shape parameter) 0.5 (circle shape)

Table 3: Parameter values used in the simulation.

Initial Condition Value
S(0) (Initial prey population) 5.0
P(0) (Initial predator population) 2.0
W (0) (Initial super predator population) | 1.5

Table 4: Initial conditions for the simulation.

Simulation time: 7 € [0,50].

Table 5: Parameter values and initial conditions for the preypredatorsuper predator model

Symbol | Description Value
/4 Growth rate of prey population 1.0
01 Carrying capacity of prey 10
& Allee threshold for prey 1
& Predation rate of predator on prey 0.5
& Predation rate of super predator on prey 0.3
&3 Predation rate of super predator on predator | 0.2
73] Natural death rate of predator 0.1
172) Natural death rate of super predator 0.1
o Herd shape parameter (circle shape) 0.5
q1 Catchability coefficient for predator 0.05
q2 Catchability coefficient for super predator 0.04
Eq Harvesting effort on predator 0.8
E; Harvesting effort on super predator 0.6

S(0) | Initial prey population 4
P(0) | Initial predator population
W(0) | Initial super predator population 1

15. Conclusion

In this work, we introduced and examined a new fractional-order predatorpreysuper predator model
that incorporates nonlinear harvesting, strong Allee effects, maturation delay, and herd behavior. By
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utilizing the Caputo fractional derivative, we captured the inherent memory effects of ecological sys-
tems, offering a more realistic portrayal compared to traditional integer-order models. The models
formulation, featuring generalized functional responses and dual harvesting mechanisms, allowed for
a thorough exploration of ecological dynamics under various biological and human influences.

Using rigorous analytical methods, we established the existence and local stability of equilibria
and derived critical reproduction numbers that determine species survival or extinction. Additionally,
we identified conditions where maturation delays can trigger Hopf bifurcations, leading to persistent
oscillatory behavior. Extensive numerical simulations, performed via the AdamsBashforthMoulton
method, supported our theoretical analysis and uncovered complex dynamical patterns, including sta-
bility switches and periodic solutions.

Overall, our findings enhance the understanding of multi-trophic ecological interactions shaped by
memory, delay, and harvesting, providing valuable insights for ecological management and conserva-
tion. Future research could extend this model to incorporate stochastic influences, spatial variability,
or adaptive harvesting strategies in memory-dependent ecological systems.
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