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Abstract:  

In this paper, we present a brief analysis of the evolution of theories of dynamical systems 

applied in various mathematical Models. In this study, the contributions of some notable 

mathematicians have been extensively discussed in the context of multiple applications of 

mathematical theories to dynamical systems. The investigation of the stability of periodic 

solutions, the stability of equilibrium, and Poincaré’s periodicity has also been discussed in this 

paper. Moreover, an extensive study has been carried out on a brief application of the Poincaré 

Maps, the Last Geometric Theorem, the Restricted Three-Body Problem, the Generalized Hopf 

bifurcation, and the Van der Pol and Lienard equation for various mathematical models applied 

in dynamical systems. 

Keywords: Dynamical Systems; Poincaré’s contribution; Mathematical Modeling and Analysis; 

Aleksandr Lyapunov contribution; David Birkhoff Contribution. 

 

1. Introduction 

Poincaré developed some mathematical models for dynamical systems that could not be spread 

in a cumulative, linear fashion. For the first time, the works of Poincaré, Levi-Civita, and then 

Birkhoff introduced various concepts of stability, particularly in Birkhoff's work. Thus, it 

became possible for researchers to study the dynamical systems that evolve as a novel 

mathematical theory, particularly as a theory of mathematical modeling associated with 

qualitative nature in connection with stability analysis. Birkhoff highlighted many of Poincaré's 

works and challenged his conceptions in the stability analysis. In 1901, Birkhoff cited some 

publications by Levi-Civita, specifically an article that emphasizes the need for a more 
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appropriate stability model in a qualitative approach. However, in this paper, we highlighted a 

full-length discussion of the various theories and applications of mathematical models based on 

the dynamical systems employed by some of the greatest mathematicians in the history of 

mathematics. The root of the development of the mathematical theory of dynamical systems can 

be traced back to Poincaré’s research work based on differential equations and celestial 

mechanics from the 1880s. His research work can be classified mainly into four areas: (i) the 

qualitative theory, (ii) trajectories of global stability represented by such differential equations, 

(iii) the study of bifurcation of such dynamical systems, and (iv) probabilistic study of such 

systems with the help of Ergodic theory. We now examine these four areas one by one to 

understand the chronological development of the theories on dynamical systems contributed by 

Poincaré. Some of the great names of Mathematics, such as Cauchy, Jacobi, Lagrange, Laplace, 

d’Alembert, Clairaut, and Euler, developed the analysis of the Three-Body problem. During the 

19th century, significant advancements in Newtonian mechanics were made to discuss the 

analytic structures of solutions obtained from the derivations of the equations of motion [3]. 

However, we have also seen that Pierre-Simon Laplace developed the perturbation method, 

which was first introduced by Leonhard Euler, to help him obtain accurate calculations of 

planetary orbits' distances as a power series in celestial mechanics. In 1846, Urbain Leverrier and 

John C. Adams developed computations of dynamical systems based on Neptune, which yielded 

potentially interesting results. The law of gravitation acting upon three masses- especially the 

Sun, the Earth, and the Moon- gave rise to a system of differential equations for which no 

explicit expression of the solution valid for all time could be found. However, in rational 

mechanics, one mostly tries to find a local trajectory, that is, solve a system of differential 

equations with given initial conditions without paying much attention to global behaviors. 

Mathematicians initially were able to yield a local solution, but obtaining a global solution was 

still a matter of considerable concern. For such a system, solutions were expressed in terms of 

power series.  

2. Poincaré’s Contribution to Dynamical Systems  

In the late nineteenth century, Poincaré introduced methods based on topology, probability, and 

geometry to explain the qualitative and complex behavior of solutions to various nonlinear 

problems. Poincaré also analyzed this method to gain a better understanding of short-term 

motions, utilizing divergent series to aid astronomers.  The major works by Poincaré on the 

Three-Body problem can be found in the memoire “Sur le probléme des trios corps et les 
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équations de la dynamique” [1], for which he won the prize in 1889 on the 60th birthday of the 

king of Sweden. Several studies on the Three-Body problems have been observed in “les 

méthodes Nouvelles de la mécanique celeste” [1-2]. These memories, in vast part, discuss the 

previous research works of Poincaré and their further developments in the three-body problem. 

These research works are the significant sources of growth in modern dynamical system theory, 

including standard forms, exponents, invariant manifolds, divergence of perturbation series, 

variational equations, integral invariants, homoclinic and heteroclinic solutions, analytic non-

integrability, the recurrence theorem, return maps, and surfaces of section. These theories 

contribute to the development of various fields, including symbolic dynamics, bifurcation theory, 

singularity theory, ergodic theory of invariant measures, the theory of K.A.M., the theory of 

weak and diffusion processes, symplectic geometry, and the development of theories related to 

computer experiments. In short, all new ideas evolving in Dynamical systems theory have roots 

in all these works of Poincaré. On the other hand, Poincaré included much literature in his book 

series “Sur les courbes définies par une équation différentielle” on the geometric and qualitative 

analysis of various mathematical models in the dynamical systems for the better understanding 

of the local and global phase portraits of solutions in the study of various differential equations, 

which are not easily solvable.  Poincaré’s work on differential equations, whether on Celestial 

mechanics or rotating fluid trajectories theory, or even his works on topology, always 

emphasized the global behavior of such differential equations. He introduced qualitative and 

geometric analysis in “Sur les courbes définies par une équation différentielle” to discuss general 

solutions and global behaviour in dynamical systems. Poincaré began by classifying two-

dimensional solutions based on the singular points. He developed a concept based on the curve's 

index, which yielded the first local qualitative result through topographical comparison. He 

presented the idea of a transverse arc in his discussion of phase space, which does not terminate 

at a single point, wraps itself asymptotically around limit cycles, with some of them being 

periodic (i.e., limit cycles). Thus, a relatively accurate understanding of trajectories can be 

obtained by starting with behavior related to singular points, limit cycles, and transverse arcs. 

Furthermore, we should stress that Poincaré himself would gradually develop the qualitative 

theory into a completely new field of mathematics by using his geometric intuition, which would 

be especially helpful for the transition from local to global knowledge. Poincaré introduced the 

transverse arc by studying the phase space. However, this theorem was not enough to describe 

the global behaviors of the higher-dimensional system. Anyway, Poincaré’s works on qualitative 

theory opened up a novel area of mathematics that led to the study of local to global knowledge.  
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Poincaré developed a qualitative theory to solve and analyze differential equations regarding 

celestial mechanics and the stability theorem for the solar system. He discussed these problems 

in his famous essay [4] and in his monumental treatise [5], where he developed a transverse 

section method and used a first-return map (or Poincaré map) to examine the behaviors within 

the neighborhood of periodic planner solutions. The Poincaré map proved to be a crucial 

component of the problem of lower-dimensional space, and the first discrete recurrence emerged 

in the theory of dynamical systems, where the study of trajectories is reduced to a point sequence 

in the normal plane, where time no longer varies continuously and is represented by integers. 

Historically, Lagrange was the first mathematician to raise the question of the stability of 

equilibrium and to formulate the criterion for verifying the stability of a system. According to 

Lagrange, “an equilibrium position is stable if the system, if the equilibrium position is disturbed 

by a small amount, the system tends to that position by itself.” His proof was based on 

linearization, which is termed the “Lagrange-Dirichlet theorem”. Lejeune Dirichlet [26] 

modified the result to understand that the concept of stability gained new meaning. The rigid 

periodicity of trajectories was what Lagrange meant by stability. Poisson had expanded it to 

include the scenario in which trajectories circled back indefinitely in their vicinities, rather than 

exactly to their initial positions. Poincaré elaborated the stability of solutions based on the 

trajectories, taking into account the departure of a trajectory from those that were initially near it. 

On the other hand, according to their characteristic exponents, both “stable” and “unstable” 

solutions are distinguished in the model. However, the results can be obtained from the Poincaré 

map, in which the phenomenon of transverse section contraction and dilation can be observed. 

Lyapunov and the Gorki School further developed the concept of global stability, which we will 

explore in our following sections. Poincaré developed the stability theorem, which was first 

published in 1885, a time when mathematicians were actively seeking connections between 

solutions of systems of differential equations and problems in celestial mechanics [27]. 

 

3. Mathematical Modeling and Analysis 

Poincaré stability of periodic solutions: In the case of stable periodic solutions 𝜓𝑖(𝑡), all the 

characteristic exponents 𝛼𝑖 = 𝑎𝑖 + 𝑖𝑏𝑖 are purely imaginary numbers. So, it guarantees that all 𝜖𝑖 

remain finite as 𝜖𝑖 = (cos(𝑏𝑖𝑡) + 𝑖𝑠𝑖𝑛(𝑏𝑖𝑡))𝑆𝑖,𝑘 , where 𝑆𝑖,𝑘  are periodic functions. 

Poincaré stability of equilibrium: Let us assume a system that consists of 𝑛 quantities such as 

𝑥1, 𝑥2, … . … , 𝑥𝑛 and consider a force function 𝐹(𝑥1, 𝑥2, … . … , 𝑥𝑛). A stable equilibrium position 
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is obtained when the function attains its maximum, and its derivatives vanish to zero.  We shall 

now mention three definitions as proposed by Poincaré: 

Poincaré stability on Poisson periodicity: In linear systems, Poincaré defined the stability of 

solutions of a mathematical model governed by a set of differential equations in the 

neighbourhood of 𝑥𝑖 = 𝜓𝑖(𝑡) i.e., periodic solution as follows: 

𝑑𝜖𝑖

𝑑𝑡
= ∑

∂Xi

𝜕𝑥𝑗
𝜖𝑗𝑗=1,𝑛   , 

where the term 𝜓𝑖(𝑡) + 𝜖𝑖(𝑡) are considered as the perturbations of 𝑥𝑖 = 𝜓𝑖(𝑡). The terms 𝛼𝑖 

in 𝜖1 = 𝑒𝛼1𝑡𝑆1, 𝑘, … , 𝜖𝑛 = 𝑒𝛼𝑛𝑡𝑆𝑛,𝑘 are termed as “characteristic exponents”. 

In the study of stability, we will discuss the historical development of Birkhoff in the 

following sections. Studying stability theory, Poincaré developed two key concepts: asymptotic 

and doubly asymptotic solutions, also referred to as elliptic and hyperbolic solutions. Poincaré’s 

works yield some beautiful implications. He also discovered that the family of trajectories of the 

periodic solutions has extensive periods, which produce islets and nodes, creating complex 

structures with regular and perturbed areas that repeat themselves in a minimal amount. Poincaré 

[33] proposed a new type of trajectory, which he called homoclinic, and it was very complicated 

for him to draw at that time. It took mathematicians years to draw such complex trajectories. 

Poincaré reduced the famous theorem, i.e., “Theorem of Geometry”. However, Birkhoff proved 

Poincaré's “Last Theorem” [35, 36]. 

Poincaré mobilized the concept of probability, which is essential to understanding chaotic 

phenomena in dynamical systems. However, in the case of stability analysis of trajectories, 

Poincaré understood that there might be an infinite number of unstable solutions as per Poisson’s 

prediction. In the dynamical system, the application of Probability theory and the Maxwell–

Boltzmann postulate has been observed in the advancements of ergodic theory and the kinetic 

theory of gases [39, 40]. Thus, we have discussed the four major themes in the above. Based on 

the above discussion, it can be concluded that the study of dynamical systems and some of the 

theorems related to it was initially initiated by Poincaré’s various works on celestial mechanics, 

which involved finding solutions to differential equations connected with those theories. He was 

the key person in coining the theory of Chaos. It is said that ‘Chaos was discovered by Poincaré 

[37]. In 1908, French mathematician and physicist also claimed, “Small differences in the initial 

conditions may produce very great ones in the final phenomena. Prediction becomes 

impossible.” [38]. This is the reason many mathematicians also term Poincaré a “Chaologist”.  
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4. Contribution of Aleksandr Lyapunov to the Dynamical System: 

For the first time in the 19th century, the Russian scientist N. E. Zhukovskii formulated and 

provided one of the most sophisticated mathematical definitions and theories of general stability 

regarding the stability of a dynamical system. In 1982, N. E. Zhukovskii (1847-1921), a Russian 

mathematician, introduced a concept of the stability of strong orbitals based on the 

reparameterization of the time variable, which agrees with Poincaré’s stability theorem for 

equilibrium and solutions of a dynamical system. However, in 1892, another Russian 

mathematician A. M Lyapunov (1857-1918), who defended his PhD thesis “A general task about 

the stability of motion” where he introduced 𝑛 quantities i.e., 𝐹𝑖 functions of 𝑘 trajectories 𝑓𝑖(𝑡) 

of 𝑞𝑖 with initial condition 𝑞𝑗0
. The quantities 𝑄𝑗 denotes the functions of perturbed trajectories 

for the perturbations 𝜖𝑗 of the initial positions and for the initial velocity 𝜖𝑗′ [41]. However, an 

equilibrium is also defined as a Lyapunov-stable system when there exists a delta-neighbourhood 

for a 𝜖-neighbourhood at the initial condition. In the original definition of Lyapunov, 𝐿𝑖 

constructs 𝜖-neighbourhood but on the other hand, 𝐸𝑗 set up the 𝛿-neighbourhood. The 

original definition of Lyapunov was only restricted to the mechanical system with 𝑘 degrees of 

freedom for 𝑛 given functions 𝑄𝑗 with 𝑘 position 𝑞𝑗. However, the modern definition of 

Lyapunov is not restricted to mechanical systems and is indeed applicable to any arbitrary 

dynamical system. The Lyapunov stability also implies that the neighbourhood solutions remain 

close to the state of equilibrium, which is similar to the idea of Lagrange’s stability. Lyapunov 

established the stability theory in two ways: (1) Lyapunov’s first indirect method, in which he 

proved the result based on linearization, and (2) the direct method of generalization, which is 

proved based on the Lagrange-Dirichlet stability theorem. The second method, also known as the 

direct method, can be applied to prove the stability of equilibrium by generalizing the concept of 

an energy function. However, in the 1960s, control theory emerged in Russia. Later, in 1907, a 

large group of researchers translated Lyapunov's works on the stability analysis of nonlinear 

systems. Apart from the Poincaré approach of stability of equilibrium, Lyapunov considered the 

Force function to develop a method that would solve such a problem without integrating. He 

defined stability by considering perturbed and non-perturbed motion. Now, we will discuss the 

stability of the equilibrium. 

Lyapunov’s stability of equilibrium: 

Let us assume a system of differential equations as     
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𝑑𝑥1

𝑑𝑡
= 𝑋1(𝑥, 𝑡), 

𝑑𝑥2

𝑑𝑡
= 𝑋2(𝑥, 𝑡), …,  

𝑑𝑥𝑛

𝑑𝑡
= (𝑥, 𝑡)             (1) 

Now, we consider an equilibrium solution of the equation (1) be (𝑥1, 𝑥2, … , 𝑥𝑛) =

(0,0,0 … ,0). Thus, for each arbitrarily small 𝑙 ∈ ℤ+, the solution of the equation (1) is stable. So, 

∃ 𝜖 ∈ ℤ+ s.t. ||𝑥1(𝑡)|| < 𝑙, … , ||𝑥𝑛(𝑡)|| < 𝑙, ∀𝑡 ∈ ℤ+, whenever ||𝑥1(𝑡0)|| < 𝜖, … , ||𝑥𝑛(𝑡0)|| <

𝜖. 

Thus, when the initial conditions of a trajectory approach the equilibrium state, the trajectory of 

the solution will be obtained within a small neighbourhood of the point 𝜖. Considering the 

transformation equation (𝑥1, 𝑥2, … , 𝑥𝑛) → (𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑛(𝑡)), we analyze the stability of a 

general solution 𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑛(𝑡) that satisfy the differential equation   

(𝑋1(0, 𝑡), 𝑋2(0, 𝑡), … , 𝑋𝑛(0, 𝑡)) = (0,0, … ,0). 

However, when the solution of 𝜖-perturbation of its initial condition remains closed, the 

general solution of the above differential equation (1) becomes stable. Inspired by the works of 

Thomson and Tait on the linear approximations, Poincaré and Lyapunov developed their works 

on the stability of equilibrium in dynamical systems. Although Lagrange was the first to raise the 

question of the Stability of equilibrium, the most complete analysis of the stability of equilibrium 

was done by Thomson and Tait. They analyzed the stability of the Jacobi and Maclaurin 

ellipsoids based on the energy function. Poincaré defined the stability theorem based on the 

Energy function, and on the other hand, Lyapunov defined it considering space motion. Mawhin 

discussed the work of Lyapunov on the differential equations and theory of stability in [23], and 

he also compared Lyapunov's and Poincaré’s different approaches 

5. Application of Poincaré Maps 

Let us consider the differential equation 𝑦̇(t) =  y(t), with an assumed period of T = 1. The 

solution to this equation with an initial value y(0) = b  is given by y(t) = b 𝑒𝑡. The Poincaré 

map is the function that provides the value of the solution at time T = 1, given by F(a) = be. This 

function is a linear map, and its graph is a simple straight line with slope (e). Fixed points of the 

Poincaré map satisfy the equation F (b) = b, which simplifies to e b = b. Since e is not equal to 

unity, the only solution is b = 0. Thus, the only fixed point of the Poincaré map is b = 0. This 

result is expected because fixed points of the Poincaré map correspond to periodic solutions of 

the differential equation. Among all solutions of the form y (t, b) = b 𝑒𝑡), only the trivial solution 

y(t) = 0 is periodic. The derivative of the Poincare map is 𝐹̇(b) = e, which holds for any b. In 

particular, at the fixed-point b = 0, we have 𝐹̇(0) = e. Since e > 1, the fixed-point b = 0 is not 
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asymptotically stable. This means that any small perturbation away from b = 0 will result in 

exponential divergence.Now, consider the nonlinear differential equation 𝑦̇(t) = 𝑦2(𝑡), and 

again assume    𝑇 = 1. The general solution of this equation is y(t) = 
1

𝑡+𝑘
. For an initial condition 

y (0) = b, the solution takes the form y (t, b) = 
𝑏

1−𝑏𝑡
. The Poincaré map at T = 1 is given by P(b) = 

𝑏

1−𝑏
. The Poincaré map is only defined for values of b where the solution exists for all t ∈ [0,1]. 

The solution becomes singular if 1 −  𝑏𝑡 = 0, meaning the solution blows up before reaching t = 

1. Therefore, the Poincaré map is only defined for b < 1. 

Consider the linear differential equation 𝑦̇(t) = −y(t) + 2 cos 𝑡, which is periodic with 

period T = 2 𝜋. It models a quantity y that undergoes exponential decay (due to -y) while being 

periodically replenished at a rate 2 cos 𝑡. This is a linear differential equation that can be solved 

using an integrating factor  𝑒𝑡. The general solution is y(t) = 𝑒−𝑡 (𝑦0- 1) + cos 𝑡 - sin 𝑡. For huge 

t, the transient term 𝑒−𝑡 (𝑦0 - 1) vanishes, and the solution approximates y(t) to cos 𝑡 - sin 𝑡. To 

find the Poincaré map, we evaluate the solution at T = 2 𝜋, and obtain P(𝑦0) = 𝑒−2 𝜋 (𝑦0 - 1) + 1, 

which simplifies to P(𝑦0) = 𝑒−2 𝜋 𝑦0 + 1- 𝑒−2 𝜋. Fixed points satisfy P(𝑦0) = 𝑦0 Solving which 

gives the unique fixed point 𝑦0 = 1. The derivative of the Poincaré map is 𝑃̇( 𝑦0) =  𝑒−2 𝜋. Since 

0 < 𝑒−2 𝜋  < 1, the fixed point 𝑦0 = 1 is asymptotically stable, meaning any small perturbation 

will decay over iterations of the Poincaré map, tending toward this steady-state value. 

Again, we consider a 3D nonlinear system (Rossler attractor) as given below. 

         𝑥̇(t) =  −(y(t) + z(t), 

𝑦̇(t) = x(t) + py(t),   

         𝑧̇(t) =  q + z(t)(x(t) − r, 

where p, q, and r are constants. 

The Rossler attractor, defined by the chaotic behavior, can be studied with a Poincaré section 

by taking the extremum of the time series 𝑥(𝑡). By monitoring the sequence of maxima 

𝑥𝑚𝑎𝑥(𝑘), crossings with the plane 𝑦 = −𝑧 are observed where x ̇(t) = 0. This method presents a 

one-dimensional map that describes the system's behavior at extremum points. A Poincaré 

section is characteristic of the intricate relationship between chaos and order in nonlinear 

dynamical systems. 

Poincaré analysed the bifurcation of various figures of equilibrium, which shows the possibility 

of finding infinitely many such equilibrium figures from an ellipsoid. On the other hand, 

Lyapunov investigated the formation of the perturbed figures that are close to the original one. 
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Although the works of Poincaré and Lyapunov shared similarities, their differing approaches led 

to distinct definitions of stability. Poincaré published an article on the equilibrium figures of a 

rotating fluid in “Sur les courbes” [27]. However, the definition of Poison’s stability concerns 

individual trajectories but not the other trajectories in the neighbourhood. This definition of 

stability by Poincaré is less restrictive than Lyapunov's definition [28, 29]. Lyapunov also used 

the stability principle of Thomson and Tait for obtaining the extended form of Lagrange’s 

theorem in the case of fluids to describe the ellipsoidal figures and their stabilities. The 

definitions of stability and energy equations introduce the novel concept of equilibrium figures, 

which illustrate the close connection between them [30, 31]. The generic deformations of the 

figures indicate that there may be a unique characteristic of both fluid and equilibrium figures 

due to the presence of infinitely small perturbations and thin prominences. Thus, to exclude 

them, it would be necessary to create hardly verifiable conditions on the nature of initial 

perturbations. In the next section, we examine the contributions of G.D. Birkhoff, who advanced 

the qualitative study of dynamical systems to a more sophisticated level. A flowchart for 

depicting the evolution of the theory of dynamical systems has been shown in Figure 1. 

 

Figure 1: Evolution of the theory of dynamical systems 

6. Birkhoff’s Contributions to Dynamical Systems: 

In the history of mathematics, many mathematicians and astronomers developed the ideas of  

Poincaré in the field of dynamical systems. However, Birkhoff was quite different, as he 
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extended the use of Poincaré topology in dynamical systems. He also provided his own point of 

view on the definition suggested by Poincaré, the three-body problem, i.e., stability as Poisson 

periodicity and one of the periodic trajectories. He also introduced a special solution, which is 

called “recurrent,” which helps describe the entire set of trajectories [25]. Birkhoff used stability 

as a form of Poisson periodicity in characterizing recurrent movement and defined stability in 

terms of other criteria. Birkhoff defined “qualitative” stability as the set of trajectories that 

establish the stability of solutions, representing the behaviors of the solution in its neighborhood. 

According to Birkhoff, the definition that is based on the development of a series containing 

trigonometric terms only should be considered a kind of “formal” or “astronomical” stability. 

Thus, Poincaré again reinvestigated and analyzed the definition of stability of periodic solutions 

for dynamical systems. Birkhoff called this type of definition “perturbative” or “mathematical” 

stability. The “perturbative” stability has the same characteristics as defined by Lyapunov. 

Birkhoff developed the full-fledged theory of dynamical systems apart from the root of celestial 

mechanics as considered by Poincaré; instead, he took a topological approach. In 1912, after the 

demise of Poincaré, Birkhoff proved “Poncaré’s last geometric theorem” [45, 46]. This theorem 

has some significant consequences in the development of the theory of dynamical systems. 

It is observed that there is a close relation between Poincaré’s theorem and the 

“Restricted Three-Body problem”. In this theorem, Poincaré tried to prove the exact number of 

periodic motions in a dynamical system, whether it contains an infinite number of motions or 

not, for the same set of parametric values of the masses. Finally, in 1912, Birkhoff proved 

Poincaré’s last theorem and published it in the Journal of the American Mathematical Society. Its 

first French translation appeared in 1913 [6]. Birkhoff gave the proof as follows: “Let us suppose 

that a continuous one-to-one transformation T takes the ring [annulus] R formed by concentric 

𝐶𝑎 and 𝐶𝑏 of radii a and b, respectively (𝑎 > 𝑏 > 0) into itself in such a way to advance the 

points of 𝐶𝑎 in a positive sense, and the points of 𝐶𝑏 in the negative sense, and at the same time 

to preserve areas. Then there are at least two invariant points” [6]. In 1925, Birkhoff extended 

Poincaré’s theorem and proved that in the case of annulus regions, the first and second invariant 

point possesses zero and two distinct invariant index points, respectively, for the arbitrary 

boundaries. These results were topological as the extension doesn’t involve any invariant 

integral. This result implies the existence of infinitely many periodic motions near a stable 

motion in a dynamic system with two degrees of freedom. It asserts the existence of non-periodic 

motion, albeit limited to some periodic motion, specifically quasiperiodic motion. Three years 

after establishing this extension, Birkhoff started exploring the connections between the 
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transformations of area-preserving and dynamical systems [8]. In this study, Birkhoff 

demonstrated that specific properties, based on area-preserving transformations, are essential for 

the motion of periodic solutions and the reverse part of a dynamical system. In one sentence, it 

means that there always exists a dynamical system correspondence to preserve the 

transformation. Birkhoff generalized this theorem into a higher-dimensional one in 1931 [9]. Due 

to these reasons, in 1924, Nikolai Krylov, a Russian mathematician, described Birkhoff as “The 

Poincaré of America”. 

 In 1915, it was observed that Birkhoff carried out numerous works on the three-body 

problem [10]. However, the approaches to working on the three-body problems differ for both 

Poincaré and Birkhoff. Poincaré carried out extensive work on the concept of periodic solutions 

in the context of motion. However, Birkhoff extended his work through theoretical analysis and 

the application of topological sets in dynamical systems. He illustrated many problems of 

dynamical systems by considering the dependency of the Jacobian constant from a topological 

perspective. Birkhoff derived a set of novel equations that address regularity and the three-body 

system, based on the transformations of variables used in a dynamical system. In this study, he 

illustrated the types of motions that are expressed in terms of streamlines in a three-dimensional 

flow. The geometry of the states of motion is also represented with the help of non-singularity 

and one of the five values of the Jacobian constant. However, in the case of four-dimensional 

space, the streamlines also help to represent the states of motion without relying on the values of 

the Jacobian constant on the non-singular manifold. On the other hand, Poincaré stated that 

problems based on a three-dimensional flow may be represented depending on the 

transformation that occurs in a two-dimensional ring, provided the mass associated with these 

two bodies is very small [11]. In this investigation, Birkhoff also illustrated that the results 

obtained in Poincaré’s transformation based on the existence of the amount of symmetric 

periodic motions as a characteristic and distribution property may be assumed as the 

multiplication of these two involutory transformations in the dynamical system. 

Birkhoff also worked in the field of General Dynamical Systems and presented the result in a 

memoire in 1935 [12]. Later, he published two of his papers on restricted problems, taking an 

idea, known as the Poincaré section, from the memoire of Poincaré published in 1935. Poincaré 

also aimed at working on the analytic properties [13] and qualitative methods [14] to study the 

changes and surface sections of various kinds of relationships and motions that occur between 

them. In 1920, Birkhoff shared some ideas in his paper “Surface transformations and their 

dynamical applications” and extended his knowledge of the three-body problem, receiving the 
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Bôcher Prize [14]. In 1923, Birkhoff [15] discussed the general theory of dynamical systems and 

certain transformations along with their fixed points. However, a more detailed explanation of 

Poincaré stability can be found in the reference paper by Birkhoff [17]. In 1927, Birkhoff 

published a book entitled “Dynamical Systems”, which was also translated into Russian [19] in 

1941. This book contains the translations of several research papers by Birkhoff. On the other 

hand, this book discusses the continuation of Poincaré's works on Celestial Mechanics, which is 

also a rare development of the theory of Dynamical systems in a topological environment [21].  

7. Contribution of Aleksandr Aleksandrovich Andronov to the Dynamical 

System: 

Andronov’s self-acknowledgment of the theory of dynamical systems has two sources: (1) L. 

I Mandelstam, who was Andronov’s mentor and a physicist who worked in optics, radiophysics, 

and in the theory of oscillations for the unification of the nature of the “Physics of oscillations”, 

(2) the works of H. Poincaré. Andronov worked extensively on an engineering problem: “to take 

self-induction into account in the case of the electromagnetic switch,” suggested by his mentor, 

Mandelstam. In van der Pol’s relaxation oscillation, where the oscillator is dissipative, non-

oscillatory external sources of energy sustain systemic vibrations, and Andronov [47] noticed 

that the motion in this oscillation is partially like Poincaré’s limit cycles. Andronov developed a 

method named “storing method” to study and investigate the properties of stability of the 

periodic solutions in a dynamical system. Later, a novel method was developed based on 

Lyapunov’s stability theory and Poincaré’s small parameter method to obtain stability and 

periodic solutions in dynamical systems.  

All these studies led Andronov and his collaborators to develop a novel theory of bifurcation, 

explicitly focusing on the double stability of the system, i.e., the system's ability to remain stable 

under initial variational conditions and parameter variations, as outlined in Lyapunov Theory. On 

the other hand, the stability of the periodic solution is apparent: “We have always to allow for the 

possibility of small variations of the form of the differential equations which describe a physical 

system”. So, these studies led to a new notion in the theory of dynamical systems, which is the 

“coarse system” introduced by Andronov and Pontryagin (1937) in the lecture as “systemès 

grossiers”. In his translation, Lefschetz calls this “coarse system” a “structurally stable system”. 

Arnold [49] accentuated this new notion as a mathematically rigorous definition and its 

usefulness in modeling mathematical problems in engineering and physics.  
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Still, the search for a limit cycle regarding two critical questions concerning the stationary 

states involved only a few methods, such as Poincaré’s index method and the Bendixson 

criterion [51]. It was essential to determine the qualitative structure of the orbits for the given 

system. In 1937, Anosov’s school developed a coarse system of two dimensions and 

characterized bifurcations that may appear, as well as topological invariants. Within this coarse 

system, a stable limit cycle that oscillates was the only phenomenon observed. All these works 

contributed to solving numerous major engineering problems, including stabilization issues (i.e., 

the Mises-Vishegradsky problem) and various nonlinear oscillation problems. Oscillation 

problems related to diodes and magnetrons necessitate the statistical study of higher frequencies. 

Some researchers also conducted a survey of the effects of masers and lasers in dynamical 

systems in 1933 [51]. In 1937, the first edition of “Theory of oscillations” describes the 

mathematical proofs and examples of the birth of a limit cycle of the bifurcation in dynamical 

systems. In the aforementioned book, the recurrence relations of the differential equations in 

dynamical systems are also detailed. However, in the meantime, several researchers have applied 

bifurcation theory to investigate the various applications of dynamical systems for both second-

order and higher-dimensional systems [52, 53, 54]. 

 

8. Contribution to the Dynamical System by Balthasar Van der Pol: 

Van der Pol began working on a problem closely related to one that had already been solved by 

Andronov a few months prior. He described the equations of amplitude for oscillation for a 

current driven by the triodes. He also showed an example of dissipative equations that sustain 

spontaneous oscillations without forcing them, given by:  

𝑣′′ − 𝜖(1 − 𝑣2)𝑣′ + 𝑣 = 0 . 

In 1926, during the investigation of the behavior of larger values of ε, Van der Pol explained 

the phenomenon of frequency demultiplication in a dynamical system. However, with the help of 

electromagnetic theory, the graphical methods, and phase-space representations, the applications 

of the differential equations in general trajectories have been discussed. Later, numerous 

investigations were done into van der Pol equations, and various generalizations were made, 

among which the Lienard forced equation [55,56] is prominent, which is given by: 

𝑦 + 𝑓(𝑦)𝑦̇ + 𝑦 = 𝑝(𝑡),  
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where 𝑝(𝑡) force term. However, to obtain the stable periodic solutions of a differential 

equation in a dynamical system, both engineers and mathematicians have studied the van der Pol 

and Lienard equations. Cartwright applied the topological methods, which were developed by 

Levinson, for discussing and explaining the Lienard equation as follows: 

   𝑦 − 𝑚(1 − 𝑦2)𝑦̇ + 𝑦 = 𝑏𝜆 cos(𝜇𝑡 + 𝑎) .̈  

On the other hand, in 1945, Littlewood et al. [57] discussed the existence of a periodic 

solution for the large values of 𝑚 and 𝑏 >
2

3
 . But at  <

2

3
 , they obtained a set 𝐾0 of nonperiodic 

trajectories, which determines the measure of zero with two separated, bounded, and unbounded 

regions of the dynamical systems. 

9. Conclusion 

In this work, a brief analysis of the evolution and applications of mathematical theories and 

models has been conducted in various aspects of dynamical systems. The present study 

highlights the fundamental contributions of notable mathematicians, including Poincaré, 

Aleksandr Lyapunov, George David Birkhoff, and Balthasar Van der Pol, who utilized various 

applications of mathematical models in dynamical systems. Critical applications of these theories 

and models in dynamical systems, as used by famous mathematicians like Poincaré, Aleksandr 

Lyapunov, George David Birkhoff, and Balthasar Van der Pol, include the stability of periodic 

solutions, stability of equilibrium, and Poison’s periodicity, which have also been included in 

this paper. While many applications of mathematical theories in dynamical systems can be 

observed, only a few have been broadly discussed in this work, such as the application of 

Poincaré Maps, the Last Geometric Theorem, the Restricted Three-Body Problem, the 

Generalized Hopf bifurcation, and the Van der Pol and Liénard equations. Additionally, many 

real-life problems based on mathematical models in dynamical systems can be explored and 

discussed. In conclusion, we extend our analysis to a theoretical approach that can be applied to 

computational mathematics across various scientific and engineering domains.  
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