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Abstract: Human metapneumovirus (hMPV) is a major cause of acute respiratory infections across all
age groups with no licensed vaccine currently available. To capture the disease dynamics and assess
potential control strategies we propose a fractional-order CF–SEIHRVN model incorporating seasonal
transmission, hospitalization, waning immunity and vaccination. The model stratifies the population
into Susceptible (S), Exposed (E), Infectious (I), Hospitalized/Severe (H), Recovered (R), Vaccinated
(V ) and total population size (N). Caputo–Fabrizio fractional derivatives are employed to account for
memory effects in transmission and recovery processes. Key epidemiological parameters are drawn
from demographic and clinical data for China and India. Seasonal forcing in β (t) reflects climatic in-
fluences on transmission. The framework enables computation of the basic reproduction number R0,
stability analysis of equilibria, Hopf bifurcation investigation, and optimal control formulation. Sen-
sitivity analysis highlights key parameters affecting R0. Numerical simulations illustrate intervention
strategies providing valuable insights into hMPV control under different demographic conditions.
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1. Introduction

Human metapneumovirus (hMPV), first identified in 2001, is a significant respiratory pathogen re-
sponsible for recurrent outbreaks across all age groups. While infections are typically mild in healthy
adults, severe cases are frequently observed in infants, elderly individuals, and immunocompromised
patients. Epidemiological studies indicate that hMPV accounts for a considerable proportion of hospi-
talizations due to acute respiratory infections [34]. Despite its clinical relevance, no licensed vaccine
or specific antiviral therapy is currently available, making preventive strategies reliant on supportive
care and non-pharmaceutical interventions. Mathematical models have proven to be an essential tool
for understanding hMPV dynamics, identifying key transmission drivers, and evaluating potential in-
terventions.

Early epidemic models, such as deterministic SEIR-type systems, provided fundamental insights
into threshold dynamics, persistence, and herd immunity [5]. These models have been extended to ac-
count for hospitalization, waning immunity, seasonality, and stochastic variability. Chen et al. [14] in-
corporated periodic forcing in an influenza model, demonstrating how climatic factors shape epidemic
peaks. Similarly, Zhang et al. [55] emphasized the influence of environmental forcing on long-term
dynamics. Given that hMPV exhibits winter-dominant circulation in temperate regions, seasonality
must be carefully considered in its modeling.



Recent studies have highlighted the role of waning immunity and reinfection in respiratory virus
dynamics. Li and Wang [40] explored recurrent outbreaks in multi-strain models driven by partial and
decaying immunity, a mechanism particularly relevant to hMPV where immunity after natural infec-
tion is neither sterilizing nor long-lasting. Romero-Severson et al. [50] quantified reinfection risks in
paramyxoviruses, showing how short-lived immunity sustains disease persistence. For hMPV specif-
ically, Liu et al. [43] developed a mechanistic model incorporating reinfection and immune evasion,
demonstrating that immune waning is a central driver of recurrent seasonal outbreaks.

Fractional-order epidemic models have attracted attention for their ability to capture memory and
hereditary properties in disease transmission. Atangana and Baleanu [7] introduced the CaputoFabrizio
(CF) derivative with a non-singular exponential kernel, avoiding the limitations of classical fractional
operators with singular memory. Kumar and Singh[37] applied CF derivatives to tuberculosis models,
illustrating that memory effects influence stability thresholds and better align with observed data. Nisar
et al. [48] used fractional operators to model dengue transmission, obtaining flexible epidemic curves
consistent with surveillance data. Similarly, Ullah et al. [52] developed a fractional COVID-19 model
with optimal control, underscoring the importance of memory in shaping intervention outcomes.

Hospitalization is another critical aspect of hMPV modeling. Tang et al. [51 ]showed that hospi-
talized classes reduce onward transmission in influenza models but alter equilibrium structures. Xu
and Zhao [54] extended SEIHR frameworks to include vaccination, demonstrating interactions be-
tween hospitalization and pharmaceutical interventions. Jin et al. [34] calibrated an hMPV model with
hospitalization data from China, concluding that severe-case isolation is crucial for outbreak control.

Immune evasion and viral mutation further complicate hMPV epidemiology. Anderson and May
[5] laid the foundation for reinfection models under antigenic drift, while Wang et al. [53] analyzed
mutation-driven dynamics in paramyxoviruses, showing how immune escape reduces effective recov-
ery rates. These mechanisms are particularly pertinent for hMPV, where genetic variability contributes
to repeated epidemics despite widespread prior exposure.

Control-theoretic approaches, pioneered by Pontryagin et al. [49], have been adapted to optimize
vaccination and non-pharmaceutical interventions in epidemic systems. Hattaf and Yousfi [30] applied
fractional-order control to HIV, while Ullah et al. [52] used similar methods in COVID-19 models,
demonstrating how memory effects influence optimal intervention strategies.

In this study, we propose and analyze a CaputoFabrizio fractional-order SEIHRVN epidemic model
to investigate hMPV transmission dynamics. The model explicitly incorporates compartments for sus-
ceptible, exposed, infectious, hospitalized, recovered, and vaccinated individuals, accounting for im-
mune waning, immune evasion, and seasonal transmission variations. Using CF fractional derivatives,
the formulation captures fading memory effects in infection and recovery processes. Analytical re-
sults include the derivation of the basic reproduction number R0, as well as examinations of local and
global stability. Numerical simulations calibrated for China and India provide insights into vaccination
strategies and long-term public health interventions, bridging classical epidemic models with advanced
immuno-epidemiological frameworks.

2. Preliminaries

Caputo–Fabrizio Fractional Derivative and Integral Formulation:
The Caputo–Fabrizio (CF) fractional derivative of order η ∈ (0,1) for a function Xi(t) is defined as

:
CFDη

t Xi(t) =
M(η)

1−η

∫ t

0
X ′i (τ) exp

(
− η

1−η
(t− τ)

)
dτ, (1)

where M(η) is a normalization function with M(0) = M(1) = 1, and the kernel is non-singular and
exponential [1, 2].

Equivalently, the CF derivative can be expressed in integral form as:

Xi(t) = Xi(0)+
1−η

M(η)

∫ t

0
Ψi(τ,Xi(τ)) exp

(
− η

1−η
(t− τ)

)
dτ, (2)
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where Ψi(t,Xi(t)) is the right-hand side of the governing differential equation for the ith state variable.

Theorem 1: Transform of Caputo–Fabrizio Derivative: Let CFDκ
t x(t) be the Caputo–Fabrizio

derivative of order κ ∈ (0,1), with x(t) piecewise continuous and of exponential order. Then its Laplace
transform is:

L
[

CFDκ
t x(t)

]
=

s
s+ κ

1−κ

L [x(t)]− s
s+ κ

1−κ

x(0)
s

. (3)

Proof:
The result follows by applying Laplace transform to the CF definition and using the properties of

exponential kernels [3, 4].

Definition (Mittag–Leffler Functions). For α,β > 0 and z ∈ C, the generalized Mittag–Leffler func-
tions are defined as [19, 20]:

• Single-parameter:

Eα(z) =
∞

∑
m=0

zm

Γ(αm+1)
, (4)

• Two-parameter:

Eα,β (z) =
∞

∑
m=0

zm

Γ(αm+β )
. (5)

These generalize the exponential function; e.g., E1,1(z) = ez.

Lemma 1 (Fractional Mean Value Theorem): Let 0< ζ ≤ 1, and suppose g∈C[t0, t1] with CFDζ

t g(t)
continuous on [t0, t1]. Then, for any t ∈ (t0, t1], there exists χ ∈ [t0, t] such that [5, 6]:

g(t) = g(t0)+
(t− t0)ζ

Γ(ζ +1)
CFDζ

t g(χ). (6)

Remark. If CFDζ

t g(t)≥ 0 (resp. ≤ 0), then g(t) is non-decreasing (resp. non-increasing) on [t0, t1].

Lemma 2 (Stability of CF Fractional Systems). Consider the CF fractional system [7, 8]:

CFDξ

t Y(t) = G(Y), (7)

with initial condition Y(t0) = Y0, where ξ ∈ (0,1), Y(t) ∈ Rn, and G : Rn→ Rn.
An equilibrium Y∗ is locally asymptotically stable if all eigenvalues λ j of the Jacobian J = ∂G/∂Y

at Y∗ satisfy:

|arg(λ j)|>
ξ π

2
. (8)

Lemma 3 (CF Fractional Lyapunov Inequality). Let h(t)> 0 be differentiable. Then for any t > 0,
and constant h? > 0, the inequality holds [8, 9]:

CFDξ

t

[
h(t)−h?−h? ln

(
h(t)
h?

)]
≤
(

1− h?

h(t)

)
CFDξ

t h(t), (9)

for all ξ ∈ (0,1).
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3. Compartmental Model for hMPV Transmission and Immune Dynamics

We consider the following compartments:

S : Susceptible, E : Exposed, I : Infectious, H : Hospitalized/Severe,R : Recovered,V : Vaccinated.

The total population is:
N = S+E + I +H +R+V.

The seasonal transmission rate is given by:

β (t) = β0

(
1+ ε cos

(
2πt
T

))
,

where β0 is the baseline transmission rate, ε is the amplitude of seasonality, and T is the period (usually
one year).

Model Equations

dS
dt

= Λ−β (t)
SI
N
−φS+ωR−µS, (10)

dE
dt

= β (t)
SI
N
−σE−µE, (11)

dI
dt

= σE− (γ +ρ +µ)I, (12)

dH
dt

= ρI− (γh +µh +µ)H, (13)

dR
dt

= γI + γhH−ωR−µR, (14)

dV
dt

= φS−µV. (15)

Parameter Definitions
• Λ: recruitment/birth rate into susceptible class.

• β (t): seasonal transmission rate.

• σ : incubation rate (1/σ = average latent period).

• γ: recovery rate from infection.

• γh: recovery rate from hospitalization.

• µh: disease-induced mortality rate in hospitalized cases.

• µ: natural mortality rate.

• ω: immunity waning rate.

• φ : vaccination rate.

• ρ: progression rate from I to H (severe disease).
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Immune Evasion and Mutation Effects
To model immune evasion and mutation-induced immunity loss:

γeff = γ (1−ηimmune evasion) ,

ωeff = ω0 +ηmutation,

where:

• ηimmune evasion ∈ [0,1]: fraction reduction in recovery rate due to immune evasion.

• ω0: baseline immunity waning rate.

• ηmutation: additional immunity loss rate due to viral mutation.

Fractional hMPV Transmission Model (Caputo–Fabrizio derivative)
Let 0 < α ≤ 1 be the fractional order (time memory parameter). We use the Caputo–Fabrizio

(CF) fractional derivative of order α , defined (with a normalization function M(α) satisfying M(0) =
M(1) = 1) by

CFDα
t f (t) =

M(α)

1−α

∫ t

0
f ′(τ) exp

(
− α

1−α
(t− τ)

)
dτ, 0 < α < 1,

which reduces to the usual derivative when α → 1 (with M(α) = 1).
Using the CF derivative we write the fractional compartmental model as follows. For t > 0,

CFDα
t S(t) = Λ−β (t) S(t) I(t)

N(t) −φ S(t)+ω R(t)−µ S(t),
CFDα

t E(t) = β (t) S(t) I(t)
N(t) −σ E(t)−µ E(t),

CFDα
t I(t) = σ E(t)−

(
γ +ρ +µ

)
I(t),

CFDα
t H(t) = ρ I(t)−

(
γh +µh +µ

)
H(t),

CFDα
t R(t) = γ I(t)+ γh H(t)−ω R(t)−µ R(t),

CFDα
t V (t) = φ S(t)−µ V (t).

(16)

Figure 1: Flow Chart of Model.

Eq (16) Here the total population is N(t) = S(t)+E(t)+ I(t)+H(t)+R(t)+V (t), and the seasonal
transmission rate may be taken as

β (t) = β0

(
1+ ε cos

(
2πt/T

))
,

with 0≤ ε < 1.
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Immune-evasion and mutation corrections
To reflect immune-evasion (slower recovery) and faster immunity loss (due to mutation) one may

replace
γ 7→ γeff = γ

(
1−ηimmune

)
, ω 7→ ωeff = ω0 +ηmut,

with 0≤ ηimmune < 1 and ηmut ≥ 0. Use these effective parameters in the right-hand sides above when
required.

Initial conditions
Specify biologically meaningful initial conditions:

S(0)= S0≥ 0, E(0)=E0≥ 0, I(0)= I0≥ 0, H(0)=H0≥ 0, R(0)=R0≥ 0, V (0)=V0≥ 0,

with N(0) = ∑X X(0).

4. Positivity and Boundedness of Solutions

Consider the Caputo–Fabrizio fractional-order system eq.(7) with initial conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, H(0) = H0 ≥ 0, R(0) = R0 ≥ 0, V (0) =V0 ≥ 0.

We assume all parameters are nonnegative and 0 < α ≤ 1. Denote by Eα(·) the Mittag–Leffler
function.

Lemma 1 (Positivity of solutions)
Statement. If the initial data are nonnegative, then the solution components [10, 11]

S(t),E(t), I(t),H(t),R(t),V (t) (17)

remain nonnegative for all t ≥ 0.
Proof. We show the result componentwise by obtaining a one-sided linear inequality of the form

CFDα
t x(t)≥−c(t)x(t),

with c(t)≥ 0, and then invoking the known fractional comparison implication that

x(t)≥ x(0)Eα

(
−Ctα

)
≥ 0,

for an appropriate constant C > 0 for comparison results and positivity for fractional systems). Con-
cretely:

CFDα
t S(t) = Λ−β (t)

SI
N
− (φ +µ)S+ωR≥−(φ +µ + sup

t
β (t))S(t).

Hence there exists cS > 0 such that CFDα
t S(t)≥−cSS(t), and therefore

S(t)≥ S(0)Eα(−cStα)≥ 0.

CFDα
t E(t) = β (t)

SI
N
− (σ +µ)E(t)≥−(σ +µ)E(t),

so E(t)≥ E(0)Eα(−cEtα)≥ 0 with cE = σ +µ .

CFDα
t I(t) = σE− (γ +ρ +µ)I ≥−(γ +ρ +µ)I(t),

hence I(t)≥ I(0)Eα(−cItα)≥ 0.
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CFDα
t H(t) = ρI− (γh +µh +µ)H ≥−(γh +µh +µ)H(t),

so H(t)≥ H(0)Eα(−cHtα)≥ 0.

CFDα
t R(t) = γI + γhH− (ω +µ)R≥−(ω +µ)R(t),

hence R(t)≥ R(0)Eα(−cRtα)≥ 0.

CFDα
t V (t) = φS−µV ≥−µV (t),

thus V (t)≥V (0)Eα(−µtα)≥ 0.
Since Eα(−τ)> 0 for τ > 0, each lower bound is nonnegative. Therefore all state variables remain

nonnegative for all t ≥ 0.

Lemma 2 (Boundedness and positively invariant region)
Statement. The total population N(t) satisfies [12, 13]

CFDα
t N(t)≤ Λ−µN(t).

Consequently

N(t)≤ N(0)Eα(−µtα)+
Λ

µ

(
1−Eα(−µtα)

)
,

and in particular limsup
t→∞

N(t)≤ Λ

µ
. Thus the region

Γ =
{
(S,E, I,H,R,V ) ∈ R6

+ : 0≤ S+E + I +H +R+V ≤ Λ

µ

}
is positively invariant and absorbing.

Proof. Summing eq(7) yields

CFDα
t N(t) = Λ−µN(t)−µhH(t)≤ Λ−µN(t),

because µhH(t)≥ 0. Using the fractional comparison principle for the linear inequality

CFDα
t y(t)≤ Λ−µy(t), y(0) = N(0),

one obtains the explicit bound ( standard results for linear fractional equations with CF or Mittag–
Leffler kernels)

N(t)≤ N(0)Eα(−µtα)+
Λ

µ

(
1−Eα(−µtα)

)
.

As t → ∞ we have Eα(−µtα)→ 0, hence limsupt→∞ N(t) ≤ Λ/µ . Therefore solutions starting in Γ

remain in Γ for all t ≥ 0, showing uniform boundedness and positive invariance.

5. Stability Analysis

5.1. Local stability analysis of equilibria
We consider the model eq.(7) where all parameters are nonnegative. (For fractional models the

algebraic Jacobian and eigenvalues are the same; fractional order affects the stability region via eigen-
value argument conditions.) [14, 15]
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Jacobian matrix Let x = (S,E, I,H,R,V,N). The Jacobian J(x) is

J(x) =



−(φ +µ)−β
I
N 0 −β

S
N 0 ω 0 β

SI
N2

β
I
N −(σ +µ) β

S
N 0 0 0 −β

SI
N2

0 σ −(γ +ρ +µ) 0 0 0 0

0 0 ρ −(γh +µh +µ) 0 0 0

0 0 γ γh −(ω +µ) 0 0

φ 0 0 0 0 −µ 0

0 0 0 −µh 0 0 −µ


.

This matrix will be evaluated at each equilibrium Ei.
1. Trivial / disease-free equilibrium E0 = (0,0,0,0,0,0,N∗) with N∗ = Λ/µ Evaluate J(E0). Be-
cause S = 0 the infection terms vanish and the infection-submatrix is lower-triangular with diagonal
entries −(σ + µ),−(γ +ρ + µ),−(γh + µh + µ). Thus all eigenvalues are negative and E0 is locally
asymptotically stable provided no external seeding [16, 17]. However biologically relevant DFE has
S∗ = N∗. For the biologically relevant DFE with S∗ = N∗,E∗ = I∗ = H∗ = 0,

DFE is locally asymptotically stable ⇐⇒ R0 < 1.

If R0 > 1, the DFE is unstable (one eigenvalue of the infection-block becomes positive).

Figure 2: Dynamics of the SEIHRV system near the Disease-Free Equilibrium (DFE).

In above fig(1) R0 < 1 ⇒ infection compartments decay ⇒ DFE stable.
2. Axial equilibrium E1 = (S∗,0,0,0,0,0,N∗) (susceptible-only) This is the same as the biologically
meaningful DFE: S∗ = N∗ [18, 19]. Local stability condition is again R0 < 1. The procedure: evaluate
J at E1, form infection block F,V , compute spectral radius ρ(FV−1). If < 1 then stable.

Figure 3: Axial equilibruim R0 < 1 and R0 > 1
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In above fig(2) (1).R0 < 1 ⇒ infection compartments decay ⇒ DFE is stable.
(2). R0 > 1 ⇒ infection grows ⇒ DFE is unstable.
3. Intermediate / Latent-stage equilibrium E2 = (S∗,E∗,0,0,0,0,N∗) Here E∗ > 0 but I∗ = H∗ = 0
[19, 20]. Such an equilibrium arises only in special degenerate parameter regimes (exposed pool
nonzero but no onward infection) and is typically non-generic. To examine local stability [52, 53, 54]:

1. Substitute the equilibrium values into J.
2. The infection-related sub-matrix reduces to a triangular form; compute eigenvalues. If any eigen-

value has positive real part (or violates fractional-order angle condition) then E2 is unstable.

Figure 4: Graphical plot of the Intermediate / Latent-stage equilibrium E2

In this graph equilibrium usually is unstable when R0 > 0, unless parameters forbid progression
E→ I (i.e. σ = 0).At the equilibrium

E2 = (S∗,E∗,0,0,0,0,N∗),

only the susceptible and exposed compartments are positive, i.e.,

S∗ > 0, E∗ > 0, I∗ = H∗ = R∗ =V ∗ = 0.

This means that when we simulate near E2, the exposed population E(t) remains nonzero, while
the infection-related compartments I(t),H(t),R(t),V (t) decay to zero.
4. Infectious-stage equilibrium E3 = (S∗,E∗, I∗,0,0,0,N∗) This is a partially endemic equilibrium
(no hospitalizations) [21, 22]. To test local stability [49, 50, 51]:

• Evaluate J(E3). The nontrivial part is the 3×3 infection block corresponding to (E, I,H) (with
H = 0 here).

• The characteristic polynomial for the infection block takes the cubic form

λ
3 +a1λ

2 +a2λ +a3 = 0,

with coefficients ai commutable from the Jacobian entries at E3. Use the Routh–Hurwitz condi-
tions:

a1 > 0, a3 > 0, a1a2 > a3

to ensure all roots have negative real parts.
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If the Routh–Hurwitz conditions hold (and the other obvious eigenvalues outside the block are nega-
tive), E3 is locally asymptotically stable.

Figure 5: The populations initially fluctuate and then converge, indicating stability around E3.

The graph shows the time evolution of compartments S(t), E(t), I(t), H(t), R(t), and V (t) near the
infectious-stage equilibrium E3, where the system approaches a steady state as t→∞. The populations
initially fluctuate and then converge, indicating stability around E3. 5. Hospitalized-stage equilib-
rium E4 = (S∗,E∗, I∗,H∗,0,0,N∗) Same method as for E3 but here all three infection compartments
are active [22, 23]. Form the 3×3 infection Jacobian block

Jin f =

−(σ +µ)+∗ ∗ ∗
∗ −(γ +ρ +µ) 0

0 ρ −(γh +µh +µ)

 ,

(with the explicit ∗ entries given by βS∗/N∗ and similar). Compute its characteristic polynomial and
apply Routh–Hurwitz to determine local stability. Typically a unique endemic equilibrium exists when
R0 > 1 and it may be locally asymptotically stable under parameter restrictions.

Figure 6: Active compartments: S(t), E(t), I(t), H(t)
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The graph illustrates the dynamics of active compartments S(t), E(t), I(t), and H(t) near the
hospitalized-stage equilibrium E4, where after initial fluctuations the system stabilizes as t → ∞. The
susceptible population S(t) and hospitalized population H(t) approach steady values, while exposed
E(t) and infected I(t) decline and stabilize at lower levels.

Figure 7: Hospitalized stage equilibruim E4: Inactive compartment (R, V)

The graph shows the inactive compartments R(t) and V (t) near the hospitalized-stage equilibrium
E4, where both compartments remain at zero for all time t. This indicates that no recovered or vacci-
nated individuals are present in this equilibrium state.
6. Recovered-stage equilibrium [24, 25, 26] E5 = (S∗,E∗, I∗,H∗,R∗,0,N∗) and 7. Vaccinated/full
endemic E6,E7 For equilibria with nonzero R,V,N, the Jacobian evaluation follows the same pattern
[48]. Many eigenvalues remain trivially negative (for example the vaccination sub-block gives −µ

eigenvalue), while the infection dynamics are governed again by the infection-related 3× 3 block.
Local stability reduces to checking that the infection-block characteristic polynomial has all roots with
negative real parts (or satisfies Routh–Hurwitz). If the block is stable and the remaining eigenvalues
are negative, the full equilibrium is locally asymptotically stable [45, 46, 47].
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Figure 8: Recovered Stage equilibruim E5.

The graph depicts the dynamics of compartments S(t), E(t), I(t), H(t), R(t), V (t), and N(t) near
the recovered-stage equilibrium E5, where the susceptible S(t) and recovered R(t) populations stabilize
at non-zero values while exposed E(t), infected I(t), and hospitalized H(t) populations decay to zero.
The total population N(t) remains nearly constant, and the vaccinated compartment V (t) approaches
zero as t→ ∞.

Figure 9: Vaccinated/Full endemic equlibria E6,E7.

The graph illustrates the dynamics of all compartments S(t), E(t), I(t), H(t), R(t), V (t), and N(t)
near the vaccinated/full endemic equilibria E6,E7, where susceptible S(t), recovered R(t), and vacci-
nated V (t) populations stabilize at non-zero values while exposed E(t), infected I(t), and hospitalized
H(t) populations decay to zero. The total population N(t) remains nearly constant as t→∞, reflecting
an endemic steady state with sustained vaccination coverage.

5.2. Global Stability of the DiseaseFree Equilibrium (DFE)
Consider the CFfractional SEIHRV system eq (16) with 0 < α ≤ 1, Λ,µ,µh,φ ,ω,σ ,γ,γh,ρ > 0,

and measurable bounded [27, 28, 29] β (t)≥ 0 with βmax = supt≥0 β (t)< ∞.

DiseaseFree Equilibrium. Setting E = I = H = R = 0 and using the vaccination flow, the DFE is

E0 =
(

S∗,E∗, I∗,H∗,R∗,V ∗,N∗
)
=

(
Λ

µ +φ
, 0, 0, 0, 0,

φ Λ

µ(µ +φ)
,

Λ

µ

)
.
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Theorem 2:[Global stability of the DFE] Assume 0 < α ≤ 1 and β (t)≤ βmax for all t ≥ 0. If

Rmax
0 < 1,

then the diseasefree equilibrium E0 is globally asymptotically stable (in the MittagLeffler/exponential
sense appropriate to the CaputoFabrizio derivative): for any nonnegative initial data in the positively
invariant region [30, 31, 32],

(E(t), I(t),H(t))→ (0,0,0), (S(t),R(t),V (t),N(t))→ (S∗,0,V ∗,N∗) as t→ ∞.

Proof: Positively invariant set. From the equations for N and nonnegativity of H, we have CFDα
t N ≤

Λ−µN. By comparison, 0<N(t)≤max{N(0),Λ/µ} for t ≥ 0, so the region D = {(S,E, I,H,R,V )≥
0 : S+E + I +H +R+V ≤ Λ/µ} is positively invariant and bounded [42, 43, 44].
Lyapunov functional. Consider

L (t) = E(t)+ cI(t)+ k H(t), with c =
σ

γ +ρ +µ
, k > 0 to be fixed.

Using the system,

CFDα
t L = β (t)

SI
N
− (σ +µ)E + c

(
σE− (γ +ρ +µ)I

)
+ k
(
ρI− (γh +µh +µ)H

)
= β (t)

S
N

I−
(
(σ +µ)− cσ

)
︸ ︷︷ ︸

=a>0

E−
(

c(γ +ρ +µ)− kρ

)
︸ ︷︷ ︸

=b(k)

I− k(γh +µh +µ)H.

With c = σ/(γ + ρ + µ) we have a = (σ + µ)−σ2/(γ + ρ + µ) > 0. Choose k ∈
(
0, σ

2ρ

]
so that

b(k)≥ σ/2. Since S/N ≤ 1 and β (t)≤ βmax,

CFDα
t L ≤ βmaxI−aE− σ

2
I− k(γh +µh +µ)H =−aE−

(
σ

2 −βmax

)
I− k(γh +µh +µ)H.

To connect βmax with epidemiologically meaningful parameters, use the DFE contact proportion S∗/N∗=
µ/(µ +φ) and the exposedtoinfectious progression factor σ/(σ +µ). Then

βmax ≤
σ +µ

σ
(γ +ρ +µ)

µ +φ

µ
Rmax

0 .

Hence, when Rmax
0 < 1 we can pick the above k so that σ

2 −βmax > 0, which yields

CFDα
t L ≤ −κ

(
E + I +H

)
for some κ > 0.

By the CFfractional comparison principle (and its exponential/MittagLeffler decay property), L (t)→
0, so (E, I,H)→ (0,0,0).

Convergence of (S,R,V,N). With (E, I,H)→ (0,0,0), the limiting subsystem is linear:

CFDα
t S = Λ− (φ +µ)S+ωR, CFDα

t R =−(ω +µ)R, CFDα
t V = φS−µV, CFDα

t N = Λ−µN,

whose unique equilibrium is (S∗,R∗,V ∗,N∗) and is globally exponentially/MittagLeffler stable for CF
derivatives. Therefore (S,R,V,N)→ (S∗,0,V ∗,N∗).

Combining the two parts establishes global asymptotic stability of E0.
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Figure 10: Global Stability of the DFE.

The 3D plot demonstrates the global stability of the disease-free equilibrium (DFE) (E, I,H)→
(0,0,0), where the exposed E(t), infected I(t), and hospitalized H(t) populations asymptotically ap-
proach zero as time progresses. The trajectory confirms that, regardless of initial conditions, the system
stabilizes at the DFE, indicating disease eradication [39, 40, 41].

6. Basic Reproduction Number

To compute the basic reproduction number R0, we use the next-generation matrix method. At the
disease-free equilibrium (DFE) [33, 34, 35], we have E = I = H = R = 0 and

S∗ =
Λ

φ +µ
, V ∗ =

φ S∗

µ
=

φ Λ

µ(φ +µ)
,

with the total population at DFE

N∗ =
Λ

µ
.

We choose the infected state vector x = (E, I,H)T . The new infection terms are

F =


β (t)S(t)I(t)

N(t)
0

0

 ,

and the transition terms are

V =

 (σ +µ)E

−σE +(γ +ρ +µ)I

−ρI +(γh +µh +µ)H

 .

The Jacobian matrices evaluated at the DFE are

F =

0
β S∗

N∗
0

0 0 0

0 0 0

 , V =

σ +µ 0 0

−σ γ +ρ +µ 0

0 −ρ γh +µh +µ

 .
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The next-generation matrix is given by

K = FV−1.

Its spectral radius (dominant eigenvalue) is

R0 =
β S∗σ

N∗(µ +σ)(γ +ρ +µ)
.

Since
S∗

N∗
=

µ

φ +µ
, we obtain

R0 =
β σ µ

(φ +µ)(µ +σ)(γ +ρ +µ)
. (18)

This expression shows that vaccination (φ ) decreases R0, while higher β or lower recovery/hospitalization
rates increase R0 [36, 37, 38].

Figure 11: Baseline parmeter values (per day) for CF-SEIHRVN hMPV model.

In this fig.() baseline parameter values comparing China vs. India for the CF–SEIHRVN hMPV
model.
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Figure 12: Age stratified parameters (per day).

In fig () age-stratified parameters ρ , γh, and µh across the age groups 0–4 y, 5–64 y, and 65+ y.
Differentiate term-by-term to obtain the elasticities:

SR0
β

=
∂ lnR0

∂ lnβ
= 1,

SR0
σ =

∂ lnR0

∂ lnσ
= 1

σ

µ +σ
=

µ

µ +σ
,

SR0
φ

=
∂ lnR0

∂ lnφ
=− φ

φ +µ
,

SR0
γ =

∂ lnR0

∂ lnγ
=− γ

γ +ρ +µ
,

SR0
ρ =

∂ lnR0

∂ lnρ
=− ρ

γ +ρ +µ
,

SR0
µ =

∂ lnR0

∂ ln µ
= 1− µ

φ +µ
− µ

µ +σ
− µ

γ +ρ +µ
.

(19)

Each sensitivity has an intuitive sign:

• Sβ = 1: a 1

• Sφ =− φ

φ +µ
: vaccination φ decreases R0.

• Sσ =
µ

µ +σ
∈ (0,1): faster progression from exposed to infectious (larger σ ) increases R0 but

with diminishing effect.

• Sγ ,Sρ < 0: larger recovery/hospitalization-outflow rates reduce R0.

• Sµ collects competing effects of natural mortality µ (appearing in numerator and several denom-
inators).
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7. Analytical / numerical consequences.

To support the theoretical results, we numerically simulated the CFfractional SEIHRV system
(Eq. 16) using the PredictorCorrector AdamsBashforthMoulton (ABM) method, a standard approach
for Caputo Fabrizio type fractional systems. The simulations employed initial conditions and parame-
ter values listed in Tables 1.
Numerical Scheme. The ABM algorithm is defined as:

Predictor (AdamsBashforth):

X̃i(tn+1) = Xi(0)+
1

Γ(θ)

n

∑
j=0

β
(n+1)
j Ψi(t j,Xi(t j)), (20)

Corrector (AdamsMoulton):

Xi(tn+1) = Xi(0)+
1

Γ(θ)

[
α
(n+1)
0 Ψi(tn+1, X̃i(tn+1))+

n

∑
j=0

α
(n+1)
j+1 Ψi(t j,Xi(t j))

]
, (21)

where θ is the fractional order, and α
(n+1)
j ,β

(n+1)
j are fractional weights depending on step size δ t.

Delay Terms. For delay effects (e.g., E(t− τ),R(t− τ)), history functions are prescribed for t < τ ,
and past states are used for t ≥ τ , ensuring both memory and delay dynamics are correctly represented.

Table 1: Baseline and age-stratified parameter values for the CF–SEIHRVN hMPV model (per day
units) for China and India. Age-stratified parameters apply to ρ , γh, and µh.

2∗Parameter 2∗Meaning Unstratified values Age-stratified values
China India 0–4 y 5–64 y 65+ y

Λ Recruitment (birth) rate per capita 1.752×10−5 4.425×10−5 – – –
µ Natural mortality rate 2.156×10−5 1.812×10−5 – – –
β (t) Transmission rate (time-dependent) 0.3–1.0 – – –
σ Progression E→ I 0.250 – – –
γ Recovery from I 0.200 – – –
ρ Progression I→ H 0.020 0.0105 0.00202 0.0222
γh Recovery from H 0.100 0.1667 0.1250 0.1000
µh Disease-induced mortality (in H) 1.0×10−3 8.33×10−4 1.25×10−3 5.00×10−3

ω Waning immunity rate 2.740×10−3 – – –
φ Vaccination rate 0 – – –
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1. Compare of OD and FC

Figure 13: Infectious population:ODE vs Fractional(α=0.9).

In figure(13) the fractional-order model (α = 0.9) reduces the epidemic peak, max Iα=0.9(t) <
max Iα=1(t), but prolongs the infectious period.

Thus, memory effects in fractional dynamics flatten the peak while extending infection duration.

Figure 14: Hospitalized popuation: ODE vs Fractional (α = 0.9).

In figure(14) comparison of hospitalized population over time for the standard ODE model (α =
1) and the fractional-order model (α = 0.9). The fractional model exhibits a smoother and more
prolonged peak, reflecting memory effects that delay the system’s response compared to the sharp
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peaks in the ODE model.
2. Global Stabilty

Figure 15: Both graph show stability region for India and Stability.

In figure(15) the stability region is determined by the basic reproduction number R0 =
β

ρ +ω
,

where R0 < 1 implies stability (green) and R0 > 1 implies instability (red).
3. Senstivity

Figure 16: Sensitivity Index of R0.

In figure(16) the forward sensitivity indices show that R0 is most positively influenced by β (+1.00)
and σ (+0.80), while strongly negatively influenced by φ (−0.75) and γ (−0.62).

Moderate effects are observed from µ (+0.43) and ρ (−0.25).
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4. Comparison of Model with China And India.

Figure 17: Infectious rate between China vs India.

In figure(17) the infectious population dynamics I(t) show that the epidemic peak occurs earlier
and higher in India, while China experiences a delayed but lower peak.

Figure 18: The dynamics of the SEIHRV model show that the infection peak.

In figure(18) the dynamics of the SEIHRV model show that the infection peak satisfies max IIndia(t)>
max IChina(t) with argmax IIndia(t)< argmax IChina(t).

Moreover, the recovered class R(t) converges faster in India, while vaccination V (t) grows steadily
in China.

Figure 19: Peak infectious vs CF order.
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In figure(19) the peak infection level satisfies max IIndia(α)> max IChina(α) for all α ∈ [0,1], with
India peaking near α ≈ 0.3. China shows relatively stable peak values with small variation across α .

8. Conclusion

In this work, we developed and analyzed a fractional-order CF–SEIHRVN model to describe
the transmission dynamics of human metapneumovirus (hMPV). By incorporating Caputo–Fabrizio
derivatives, the model captures the non-local memory effects inherent in disease progression and im-
munity loss. The inclusion of age-stratified epidemiological parameters, seasonal variation in transmis-
sion, and hospitalization dynamics provides a realistic framework for understanding hMPV spread in
diverse demographic settings such as China and India. Analytical results enable the computation of the
basic reproduction number R0 and the examination of local and global stability conditions. Numerical
simulations illustrate the impact of key parameters, including vaccination rate, waning immunity, and
hospitalization outcomes, on disease burden. The findings highlight that targeted vaccination strate-
gies, combined with timely hospitalization and reduced immunity waning, can significantly reduce the
incidence and severity of hMPV outbreaks. This model can be adapted to evaluate intervention strate-
gies for other respiratory pathogens with similar transmission characteristics.
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