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Abstract: In this paper we have evaluated some new results with Saigo fractional integral operator first
and second kinds involving generalized Mittag-Leffler functions and also evaluate the new theorem
with special cases.
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1. Introduction

The special functions of the form

Eα(z) =
∞

∑
n=0

1
Γ(αn+1)

zn(z,α ∈ C,Re(α)> 0) (1)

and

Eα,β (z) =
∞

∑
n=0

1
Γ(αn+β )

zn(z,α,β ∈ C,Re(α)> 0,Re(β )> 0) (2)

with C being the set of complex number, are known as the function Eα(z) was introduced by Mittag-
Leffler in the year of 1903. It is direct generalization of the exponential series. For α = 1 we have the
exponential series. and Eα,β (z) was introduced by Wiman in 1905.

The main results in the classical theory of these functions can be found in the handbook by Erdelyi
et al [1953] [2] and more results are given in the books by Dzherbashyan [1966],[1993] [11].

Prabhakar [1971][8] introduced the function Eγ

α,β (z) in the form:

Eγ

α,β (z) =
∞

∑
n=0

(γ)n

Γ(αn+β )n!
zn(z,α,β ,γ ∈ C,Re(α)> 0,Re(β )> 0) (3)

where (γ)n is the Pochhammer symbol, defined as:

(γ)n =
Γ(γ +n)

Γ(γ)
=

{
1, if n = 0, γ ∈ C\{0},
γ(γ +1)(γ +2) · · ·(γ +n−1), if n ∈ N, γ ∈ C.

(4)

where N= 1,2,3, ... is the set of natural numbers and N0 = N∪{0},



The function Eγ

α,β (z) is generalization of the exponential function exp(z), Mittag- Leffler func-

tion Eα(z) and Wilman’s function Eγ

α,β (z).[3], [9] and Kilbas and Saigo [10], [6] investigated several
properties and applications of the functions defined in (1 to 3).

As Salim in [9] introduced a further generalization of the Mittag- Leffler function in the form

Eγ,δ
α,β (z) =

∞

∑
n=0

(γ)n

Γ(αn+β )(δ )n
zn (5)

where
(z,α,β ,γ,δ ∈ C,min(Re(α)> 0,Re(β ),Re(δ ))> 0) (6)

Eγ,δ
α,β (z) contains the aforementioned Mittag-Leffler function.

Note that Eγ,1
α,β (z) = Eγ

α,β ,E
1,1
α,β (z) = Eα,β and E1,1

α,1(z) = Eα(z). Throughout this investigation, we

shall use these facts to study the various properties and relations of the function Eγ,δ
α,β (z)

Here in this sections we have studied the fractional integral operator introduced by Saigo ([1978],[1979]),[10],
[7] containing generalized Mittag-Leffler function defined in eq (5) in the kernel.
For e.g. as given as follows:
1. The basic Mittag-Leffler function is denoted by Eα(z) and it is defined as

Eα(z) =
∞

∑
n=0

zn

Γ(αn+1)
, ℜ(α)> 0.

Note that when α = 1,
∞

∑
n=0

zn

Γ(n+1)
=

∞

∑
n=0

zn

n!
= ez,

and hence Eα(z) is a generalization of the exponential series.
2. Prove that

E1,3(z) =
ez− z−1

z2

E1,3(z) =
∞

∑
n=0

zn

Γ(n+3)
=

1
z2

∞

∑
n=0

zn+2

Γ(n+2)
=

1
z2 (e

z− z−1).
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Figure 1: Numerical Graph

The plotted curve increases as z increases. This behavior suggests that E1,3(z) is a growing function
of z, likely exponential or polynomial in nature.

3. One generalization of Eα(z) is denoted and defined as follows:

Eα,β (z) =
∞

∑
n=0

zn

Γ(β +αn)
, ℜ(α)> 0, ℜ(β )> 0.

This is a 2-parameter generalization of Eα(z).
A 3-parameter generalization of Eα(z) is denoted by Eγ

α,β (z) and it is defined as

Eγ

α,β (z) =
∞

∑
n=0

(γ)nzn

n!Γ(β +αn)
, ℜ(α)> 0, ℜ(β )> 0.

2. Fractional Integrals and Derivatives

The fractional integrals and derivatives which will be required are defined as follows[5], [4], [13],
[12]:

Let α , β , and η be complex numbers, and let x ∈ R+ = (0,∞).
Following [5], [4] the fractional integral( Re(α)> 0) and derivative (Re(α)< 0) of first kind of a

function f (x) on R+ are defined respectively in the forms:{
Iα,β ,η
0,x f = x−α−β

Γ(α)

∫ x
0 (x− t)α−1

2F1
(
α +β ,−η ;α;1− t

x

)
f (t)dt,Re(α)> 0

= dn

dxn Iα+n,β−n,η−n
0,x f ,0 < Re(α)+n≤ 1,(n = 1,2,3...)

(7)

where 2F1(.) is Gauss’s hypergeometric function.
Fractional integral(Re(α) > 0) and derivative (Re(α) < 0) of second kind of a function f (x) on

R+ are given by:{
Jα,β ,η

x,∞ f = 1
Γ(α)

∫
∞

x (t− x)α−1t−α−β
2F1
(
α +β ,−η ;α;1− x

t

)
f (t)dt,Re(α)> 0

= (−1)n dn

dxn Jα+n,−β−n,η
x,∞ f ,0 < Re(α)+n≤ 1,(n = 1,2,3...)

(8)
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3. The Riemann-Liouville, Weyl and Erdelyi-Kober fractional operators

The Riemann-Liouville, Weyl and Erdelyi-Kober fractional operators are interpreted as special
cases of the operators I and J:{

Rα
0,x f = Iα,−α,η

0,x f = 1
Γ(α)

∫ x
0 (x− t)α−1 f (t)dt,Re(α)> 0

= dn

dxn Rα+n
0,x f ,0 < Re(α)+n≤ 1,(n = 1,2,3, ...)

(9)

{
W α

x,∞ f = Jα,−α,η
x,∞ f = 1

Γ(α)

∫
∞

x (t− x)α−1 f (t)dt,Re(α)> 0

= (−1)n dn

dxnW α+n
x,∞ f ,0 < Re(α)+n≤ 1,(n = 1,2,3, ...)

(10)

Eα,η
0,x f = Iα,0,η

0,x f =
1

Γ(α)
x−α−η

∫ x

0
(x− t)α−1tη f (t)dt,Re(α)> 0 (11)

and
kα,η

x,∞ f = Jα,0,η
x,∞ f =

1
Γ(α)

xη

∫ x

0
(t− x)α−1t−α−η f (t)dt,Re(α)> 0 (12)

In this section we have made use of right-sided Riemann-Liouville fractional integral operators IP
a+ and

the right-sided Riemann-Liouville fractional derivative operator DP
a+ which are studied by [6], [13],

[12] and defined as

(Iµ

a+ f )(x) =
1

Γ(µ)

∫ x

a

f (t)
(x− t)1−µ

dt,R(µ)> 0 (13)

and

(Dµ

a+ f )(x) =
(

d
dx

)n

(In−µ

a+ f )(x),R(µ)> 0;n = [R(µ)]+1 (14)

Where[x] denote the greatest integer in the real number x. We remark in passing that Hilter [2000].
[2006] generalized Riemann-Liouville fractional derivative operator Dµ

a+ in (14)by
introducing a right-sided fractional derivative operator Dµ,ν

a+ of order 0 < µ < 1 and type 0≤ ν ≤ 1
with respect to x as follows:

(Dµ,ν
a+ f )(x) =

(
Iν(1−µ)
a+

d
dx

(
I(1−ν)(1−µ)
a+ f

))
(x) (15)

The generalization (15) yields the classical Riemann-Liouville fractional derivative operator Dµ

a+ when
ν = 0. Moreover, in its special case when ν = 1, the defination (15) would reduce to the familiar Caputo
fractional derivative operators in [4].

4. Saigo Fractional Integrals Involving Generalized Mittag-Leffler Function

Theorem 1: Here in this section, we have obtained the fractional integral of the first kind involving the
generalized Mittag-Leffler function:(

Iα,β ,η
0,x

[
tρ−1Eγ,δ

α,β (atβ )
])

(x) = x−β+ρ−1 Γ(δ )

Γ(γ)

∞

∑
n=0

(α +β )n(−η)n

n! 3ψ3 (γ,1),(1,1),(ρ,β );
(axβ )

(δ ,1),(β ,α),(α +ρ +n,β );

 (16)
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provided Re(x) > 0,Re(γ) > 0 and fractional integral of second kind involving Generalized Mittag-
Leffler function as:(

Jα,β ,η
x,∞

[
tρ−1Eγ,δ

α,β (at−β )
])

(x) = x−β+ρ−1 Γ(δ )

Γ(γ)

∞

∑
n=0

(α +β )n(−η)n

n! 3ψ3 (γ,1),(1,1),(1+β −ρ,β );
(ax−β )

(δ ,1),(β ,α),(1+α +β −ρ +n,β );

 , (17)

provided Re(x)> 0,Re(γ)> 0,

(α,β ,γ,δ ∈ C,min(Re(α)> 0,Re(β ),Re(δ ))> 0)

Proof: Prof for (16): Let us take the left hand side as(
Iα,β ,η
0,x

[
tρ−1Eγ,δ

α,β (atβ )
])

(x) =
x−α−β

Γ(α)

∫ x

0
(x− t)α−1

2F1

(
α +β ,−η ;α;1− t

x

)
tρ−1Eγ,δ

α,β (atβ )dt

=
x−α−β

Γ(α)

∫ x

0
(x− t)α−1

∞

∑
n=0

(α +β )n(−η)n

(α)nn!xn (x− t)ntρ−1
∞

∑
n=0

(γ)nantnβ

Γ(αn+β )(δ )n
dt

(18)
putting t

x = u and interchanging the order of integration and summation which is permissible under the
conditions stated and then using the beta integral appropriately, we get

xρ−β−1 Γ(δ )

Γ(γ)

∞

∑
n=0

(α +β )n(−η)n

n! 3ψ3

 (γ,1),(1,1),(ρ,β );
axβ

(δ ,1),(β ,α),(α +ρ +n,β );

 (19)

which is the requirement result(16)
Similarly we can prove the following results for the Riemann-Liouville, Weyl and Erdelyi-Kober frac-
tional operators involving generalized Mittag-Leffler function.

(
Iα

0+

[
tρ−1Eγ,δ

α,β (atβ )
])

(x) = xα+ρ−1 Γ(δ )

Γ(γ)
3ψ3

 (γ,1),(1,1),(ρ,β );
axβ

(δ ,1),(β ,α),(α +ρ,β );

 (20)

(
Dα

0+

[
tρ−1Eγ,δ

α,β (atβ )
])

(x) = x−α+ρ−1 Γ(δ )

Γ(γ)
3ψ3

 (γ,1),(1,1),(ρ,β );
axβ

(δ ,1),(β ,α),(−α +ρ,β );

 (21)

(
Iα
−

[
tρ−1Eγ,δ

α,β (atβ )
])

(x) = x−ρ Γ(δ )

Γ(γ)
3ψ3

 (γ,1),(1,1),(ρ,β );
ax−β

(δ ,1),(β ,α),(α +ρ,β );

 (22)

(
Dα
−

[
tρ−1Eγ,δ

α,β (at−β )
])

(x) = x−ρ Γ(δ )

Γ(γ)
3ψ3

 (γ,1),(1,1),(ρ,β );
axβ

(δ ,1),(β ,α),(−α +ρ,−β );

 (23)

(
W α

x,∞

[
tρ−1Eγ,δ

α,β (atβ )
])

(x) = xα+ρ−1 Γ(δ )

Γ(γ)
3ψ3

 (γ,1),(1,1),(1−α−ρ,β );
ax−β

(δ ,1),(β ,α),(1−α−β ,β );

 (24)

(
Eα,η

0,x

[
tρ−1Eγ,δ

α,β (atβ )
])

(x) = xρ−1 Γ(δ )

Γ(γ)
3ψ3

 (γ,1),(1,1),(η +ρ,β );
axβ

(δ ,1),(β ,α),(α +ρ +η ,β );

 (25)
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(
K−α,η

x,∞

[
tρ−1Eγ,δ

α,β (at−β )
])

(x) = xρ−1 Γ(δ )

Γ(γ)
3ψ3

 (γ,1),(1,1),(1+η−ρ,β );
ax−β

(δ ,1),(β ,α),(1+α−ρ +η ,β );

 (26)

Special Cases:
(i) Putting δ = 1 in (16), we have(

Iα,β ,η
0,x

[
tρ−1Eγ

α,β (atβ )
])

(x) =
x−β+ρ−1

Γ(γ)

∞

∑
n=0

(α +β )n(−η)n

n! 2ψ2 (γ,1),(ρ,β );
(axβ )

(β ,α),(α +ρ +n,β );

 (27)

(ii) Putting δ = γ = 1 in (16), we have(
Iα,β ,η
0,x

[
tρ−1Eα,β (atβ )

])
(x) = x−β+ρ−1

∞

∑
n=0

(α +β )n(−η)n

n! 2ψ2 (ρ,β ),(1,1);
(axβ )

(β ,α),(α +ρ +n,β );

 (28)

(iii) Putting δ = γ = β = 1 in (16), we have(
Iα,β ,η
0,x

[
tρ−1Eα(atβ )

])
(x) = x−β+ρ−1

∞

∑
n=0

(α +β )k(−η)n

n! 2ψ2 (1,1),(ρ,β );
(axβ )

(1,α),(α +ρ +n,β );

 (29)

Theorem 2: Let x > a(a ∈ R+ = [0,∞)) ,0 < µ < 1,0 ≤ ν ≤ 1 and Re(α) > max{0,Re(δ )− 1},
min{Re(β ),Re(δ ),Re(λ )}> 0 and γ,ω ∈ C, then

(
Iλ

a+

[
(t−a)β−1Eγ,δ

α,β [ω(t−a)α ]
])

(x) = (x−a)β+λ−1 Γ(δ )

Γ(γ)
2ψ2

 (γ,1),(1,1);
ω(x−a)α

(δ ,1),(λ +β ,α);


(30)

Proof: Let

(
Dλ

a+

[
(t−a)β−1Eγ,δ

α,β [ω(t−a)α ]
])

(x) = (x−a)β−λ−1 Γ(δ )

Γ(γ)
2ψ2

 (γ,1),(1,1);
ω(x−a)α

(δ ,1),(−λ +β ,α);


(31)

and

(
Dµ,ν

a+

[
(t−a)β−1Eγ,δ

α,β [ω(t−a)α ]
])

(x) = (x−a)β−λ−1
2ψ2

 (γ,1),(1,1);
ω(x−a)α

(δ ,1),(β −µ,α);


(32)
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Proof of (30) : using the defination(27), the left hand side can be written as(
Iλ

a+

[
(t−a)β−1Eγ,δ

α,β [ω(t−a)α ]
])

(x)

=
1

Γ(λ )

∫ x

a
(x− t)λ−1(t−a)β−1Eγ,δ

α,β [ω(t−a)α ]dt
(33)

Expressing Eγ,δ
α,β by its series expansion formula, we have

1
Γ(λ )

∫ x

a
(x− t)λ−1(t−a)β−1

∞

∑
n=0

(γ)n

Γ(αn+β )(δ )n
ω

n(t−a)αndt (34)

Interchanging the order of integration and summation which is permission under the conditions stated
and then using the beta integral appropriately, we get

(x−a)β+λ−1 Γ(δ )

Γ(γ)
2ψ2

 (γ,1),(1,1);
ω(x−a)α

(δ ,1),(β +λ ,α);

 (35)

which is the required result.
Special Cases:
(i) Putting δ = 1 in (30) we have(

Iλ

a+

[
(t−a)β−1Eγ

α,β [ω(t−a)α ]
])

(x) =

(x−a)β+λ−1

Γ(γ)
1ψ1

 (γ,1);
ω(x−a)α

(β +λ ,α);

 (36)

(ii) Putting δ = 1and γ = 1 in(30) we have(
Iλ

a+

[
(t−a)β−1Eα,β [ω(t−a)α ]

])
(x) =

(x−a)β+λ−1

Γ(γ)
1ψ1

 (1,1);
ω(x−a)α

(β +λ ,α);

 (37)

(iii) Putting δ = 1 and γ = β = 1in (30) we have(
Iλ

a+

[
(t−a)β−1Eα [ω(t−a)α ]

])
(x) =

(x−a)β+λ−1

Γ(γ)
2ψ2

 (β ,α),(1,1);
ω(x−a)α

(1,α),(β +λ ,α);

 (38)

5. Application

The application of Saigo integral operators and Mittag-Leffler functions provides a powerful frame-
work for solving complex problems in fractional calculus. These tools are particularly useful in model-
ing phenomena such as anomalous diffusion, where the Mittag-Leffler function generalizes exponential
decay to describe processes with memory effects. For example, in heat conduction in fractal media, the
Saigo operator can be used to derive solutions that better capture the non-local behavior of the system
compared to classical approaches.
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6. Conclusion

The study explores the application of Saigo integral operators in conjunction with Mittag-Leffler
functions, deriving significant results and establishing new theorems that include various special cases,
thereby advancing the understanding of their interplay in fractional calculus.
Funding here: No Funding
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