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Abstract:

Organic chemistry constantly pushes the boundaries by synthesizing new molecules each year.
However, before these compounds can be practically used, rigorous testing is needed to
understand their characteristics. This process can be expensive and time-consuming, requiring
specialized laboratory equipment, chemicals, and personnel. To address these challenges,
mathematical models are increasingly used to predict the properties of compounds theoretically.
In this study, we focus on polyether ketones (PEKS), calculating their atom bond connectivity
(ABC) and examining their sum-connectivity and multiplicative-connectivity indexes. Our
results show that PEKs exhibit notably high atom bond connectivity, which could have
promising implications for their use in material science and other advanced applications.
Keywords: Connectivity index; Polyether ketones; Randic index; Modeling properties;
Mathematical Model.

1. Intorduction

The upsurge of the application of graph-theoretical structural descriptors symbolizes the
heightened mathematics incorporation into contemporary chemistry, hence, an immense leap in
the predictive models development path. The topological indices are a key element in this field
of study. They are the only ones that remain constant even when a graph is transformed into an
isomorphic version. Most of the interest in the topological indices comes from their application
in QSPR (Quantitative Structure-Property Relationships) and QSAR (Quantitative Structure-
Activity Relationships), which are used for measuring and analyzing the correlation between two
sets of data [1,2].



One of the earliest and most widely adopted graph invariants is the connectivity index, whose
introduction by Randic in 1975 is the most popular example [3]. At first, this index was
established to study the branching ways of the carbon atom skeletons of alkenes. Nevertheless,
its usefulness has grown, and it has been discovered that it has strong correlations with a great
number of physicochemical and pharmacological properties across a big spectrum of organic
compounds [4,5]. The newer member in the group of graph-theoretical invariants is "Atom-Bond
Connectivity Index™ that deals with the interconnection between atoms and bonds in a molecule
[6.7]. The index is similar to the former one but its formulation is based on the degrees of
vertices and edges rather than the branching of the molecular structures.

To explain this more formally, consider a finite, simple, connected graph where v represents the
vertices and E denotes the edges. The degree of a vertex, which is often symbolized by d for the
case where d is the number of edges connected to that vertex [8]. In the context of mathematical
modeling, a molecular or chemical graph is an abstract depiction of a chemical compound's
structure. The vertices in this graph correspond to the atoms in the molecule, while the edges
represent the bonds or links between those atoms. Topological descriptors derived from the
graph are useful in determining the relationship between the structure and physicochemical
properties of a compound [9].

Building on this concept, Kulli and colleagues introduced the atom bond sum connectivity index

of a graph G, which further refines how these molecular connections are quantified [10].
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We further define the multiplicative atom bond sum connectivity index as [11]
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The Atom-Bond Connectivity (ABC) index has, however, been documented to work well on

several pillars particularly the estimation of heat of formation in organic compounds [12].
Furtula et al. also increased the scope of the ABC index by using it in the analysis of the stability
of alkanes and cycloalkanes’ strain energy. Their studies additionally focused on the algebraic
properties of the ABC indices defined on trees which guided them in locating chemical trees that

corresponded to extremes of the ABC values [13]. In another important report, Estrada et al.



managed to employ the ABC index for the heat of formation modeling of alkenes resulting in the
creation of a strong QSPR (Quantitative Structure-Property Relationship) model for alkanes. In
particular, the intercept and the slope of their regression equation have been quantitatively
meaningful, which added confidence to the model [14].

Earlier, Kulli and his collaborators made valuable additions to this field by suggesting a number
of multiplicative connectivity indices of graph-type chemical structures. These indices were used
to model more complicated structures like nanotubes covered by C5 and C7 molecules [15]. In
another paper by the same group out of many which presented enhanced versions of the second-
and fourth-order atom-bond connectivity indices, the authors improve understanding of
structures like nanotube and nanotorus for the paraffin coating around nanostructures [16].

Wei and former colleagues were also interested in the properties of a variety of nanostructures,
but from a mathematical perspective. In particular, they were interested in such key
nanomaterials as nanotubes, nanostars, dendrimers, and nanotori. By means of edge set-
correlation using trick-type multiplicative atom-bond connectivity indices, the authors undertook
work which has defined the theoretical bases that have bearing on nanoengineering [17]. Similar
investigations into the atom-bond connectivity indices have been involved in a number of works
[18-20].

Pushed forward by these detailed investigations on the cross chemical structure and ABC index,
we opted to investigate further in Polyether ketones (PEKS). In this paper, we have calculated the
atom bond sum connectivity index and the multiplicative atom bond sum connectivity index of
the Poly-ether Ketone (PEK), Poly-ether Ketone Ketone (PEKK) and Poly-ether Ether Ketone
(PEEK). Our research presents new contributions in the knowledge of the connectivity attributes

of these important materials.

2. The ABC index of PEK

PEK is a type of polymer that comprises ketone (R-CO-R) and ether (R-O-R) functionalities in
its molecular structure. These can be synthesized by combining 4,4'-difluoro benzophenone with
hydroquinone's potassium or sodium salts. PEK as huge heat and wear resistanc [21-22]. This
highly resilient material can endure exposure to non-oxidizing acids, oils, lubricants, water
vapors, hot water, and concentrated alkalis. Its versatility makes it popular in the medical,

electronics, and automotive industries [23-25].
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Figure 1: Abase unit of PEK (a) and PEK structure (b) for analysis .
Figure 1(a), (b) shows the molecular structure and unit cell of PEK.Its structure consists of total
15n vertices and 17n — 1 edges. We represent Polyether Ketone as K,. We obtain that
{d(&),d(v): Ev € E(K,)} has five edge set partitions.

Table 1. Edge Partition of Polyether Ketone

d(€),d(v)/ v e E(K,) | (1.2) 13) (22 (2.3) (3.3)
Numbers of edges 1 n—1 |4n+2 10n—1 2n—2
Theorem 2.1:

The atom bond sum connectivity index of Polyether Ketone

ABS(K,) =Tl§+(5n+1)%+(10n—1)\/§+(2n—2)\/§

Proof:
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By using above definition and putting the values from Tablel. We get
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1 1 1 3 2
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Now after some simplification we get
ABS(K,) = ! + (5 +1) +(10 1) 3+ 2 2 2
e \/g n n ( n ) 3

Theorem 2.2:

The multiplicative atom bond sum connectivity index Polyether Ketone

ko= () 6> () "0

By using Definition of “The multiplicative atom bond sum connectivity index”

n-1

Proof :
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Now some simplification will give the desired results
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3. The ABC index of PEKK

n-1

PEKK, which belongs to the poly-aryl ether ketone family, is a semi-crystalline thermoplastic
that exhibits high resistance to heat, chemicals, and mechanical loads [26]. It has a variety of

dental and medicinal applications. The pieces are said to be as robust as aluminum while



weighing 40% less [27]. Furthermore, PEKK-produced components have demonstrated fire and
radiation resistance %,
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Figure 2: (a) Abase unit of PEKK (b) polymeric structure of PEKK

A unit cell of PEKK and its molecular structure is shown by Figure 2(a), (b). Its structure
consists of total 23n vertices and 26n — 3 edges. We represent Polyether Ketone as Ej;. We
obtain that {d(E),d(v): Ev € E(Ey)} five edge set partitions.

Table 2: Edge Partition of PEKK

d(€),d(v)/ &v € E(Ew) | (1.2) (1.3) (2.2) (2.3) (3.3)
Numbers of edges 1 2n—1 6n + 2 14n -3 4n — 2
Theorem 3.1:

The atom bond sum connectivity index of PEKK

ABS(E;p) = % + (8n + 1)\/_15 + (14n — 3)\/% + (4n — 2)]%

Proof
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By using above definition and putting the values from table 3. We get
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Now after some simplification we get the required results

ABS(Ey,) = % +(8n+ 1)% + (14n — 3)\/% + (4n — Z)ﬁ

Theorem 3.2:
The multiplicative atom bond sum connectivity index of PEKK
an+: Tn-3
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By using Definition of “The multiplicative atom bond sum connectivity index”

2n—1

Proof:
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Now after some simplification will give the desired results,
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4. The ABC index of PEEK

2n—-1

PEEK is an organic thermoplastic polymer that is colorless and belongs to the polyaryl-ether
ketone family [28]. It was prepared in November 1978 and is utilized in engineering. PEEK
polymers can be made using a process known as step-growth polymerization, which is

accomplished through the dialkylation of bisphenolate salts [29]. PEEK retains its high-



temperature mechanical and chemical-resistance qualities [30]. It is excellent for the chemical,
automotive, and aerospace industries since it is one of the few plastics that can be used in ultra-

high vacuum applications.PEEK makes medical implants, such as a partial replacement skull,
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utilized in neurosurgery procedures [31].
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Figure 3: Abase unit of PEEK (a) Polymeric structure of PEEK (b).

A unit cell of PEEK and its molecular structure is shown by Figure 3(a), (b). Its structure
consists of total22n vertices and 25n — 1 edges. We represent PEEK as K,.. We obtain that
{d(€),d(v): Ev € E(K,.)} has five edge set partitions.

Table 4: Edge Partition of Poly-ether Either Ketone

d(€),d(v)/ Ev e E(K.) | (1.2) | (1.3) |(22) (2.3) (3.3)
Numbers of edges 1 n—1 6n + 2 16n—1 2n—2
Theorem 4.1:

The atom bond sum connectivity index of PEEK

ABS(K,.) =%+(7n+1)\/—17+(6n—1)ﬁ+2(n—1)ﬁ

Proof:

d(&) +d(v) -2
ABS(K,.) = \/
vt d(&) +d()

By using above definition and putting the values from table 3. We get



/1 2-2 ,1 3-2 /2 2-2
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Now after some simplification we get the required results
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Theorem 4.2:

The multiplicative atom bond sum connectivity index of Poly-ether Either Ketone
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Now after some simplification will give the desired results,
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Table 4. The atom bond sum connectivity index for PEK, PEKK and PEEK.

n-1

n ABS (PEK) ABS (PEKK) ABS (PEEK)

1 11.79136 17.09487 10.10719




2 24.70585 36.86206 21.33751
3 37.62035 56.62926 32.56783
4 50.53484 76.39645 43.79815
5 63.44934 96.16364 55.02847
6 76.36383 115.9308 66.25879
7 89.27832 135.698 77.48911
8 102.1928 155.4652 88.71943
9 115.1073 175.2324 99.94975
10 128.0218 194.9996 111.1801
250
200 /
1
£ 150 = ABS (PEK)
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Figure 4: Comparison of atom bond sum connectivity index for PEK, PEKK and PEEK.

Table 5. The multiplicative atom bond sum connectivity index for PEK, PEKK and PEEK.

n ABSII(K_ee) ABSII(E_kk) ABSII(K _e)
1 0.000782 0.000592 0.007245
2 7.74E-07 4.60E-07 6.64E-05
3 7.66E-10 3.58E-10 6.08E-07
4 7.59E-13 2.78E-13 5.58E-09
5 7.51E-16 2.16E-16 5.11E-11
6 7.43E-19 1.68E-19 4.68E-13
7 7.35E-22 1.31E-22 4.29E-15
8 7.28E-25 1.02E-25 3.93E-17




9 7.20E-28 7.91E-29 3.60E-19

10 7.13E-31 6.15E-32 3.30E-21
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Figure 5: Comparison of atom bond sum connectivity index for PEK, PEKK and PEEK.
Results and Discussion:

The findings from our study on the Multiplicative Atom Bond Sum Connectivity Index for Poly-
ether ketone, Poly-ether ketone ketone, and Poly-ether ether ketone shed light on the intricate
relationship between molecular structure and performance. By diving deep into these
connectivity indices, we’ve uncovered valuable insights that could significantly impact how
these materials are understood and utilized. The ability to predict how these polymers will
behave in different situations can help researchers and engineers make smarter choices when
selecting materials. This means that the insights gained here could lead to more innovative
designs and applications, paving the way for materials that are not only high-performing but also
more sustainable. Ultimately, our work serves as a stepping stone for future explorations into
optimizing polymer properties, a crucial endeavor in today’s fast-paced technological landscape.

Conclusion:

To wrap up, our investigation into the Multiplicative Atom Bond Sum Connectivity Index has
revealed just how crucial these connectivity measures are in understanding the behavior of Poly-

ether ketone, Poly-ether ketone ketone, and Poly-ether ether ketone. These metrics offer a fresh




perspective on molecular interactions, allowing us to grasp the nuances of how these materials
perform. As the demand for advanced materials continues to grow, the insights from this
research hold significant promise. By integrating what we’ve learned into the design and
engineering of new materials, we can contribute to the development of cutting-edge polymers
that meet the challenges of tomorrow. Together, we’re not just advancing material science we’re

laying the groundwork for sustainable innovations that could reshape multiple industries.
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