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Abstract: Graph theory is like the backbone of our understanding of complex networks, whether
they be social, computational, or biological. In this study, we dive into the fascinating world of the
Tickysim Spiking Neural Network (TSNN) to explore its metric, edge metric, and fault-tolerant metric
dimensions. We aim To unravel its structure’s intricacies and uncover its potential applications. At
its core, the metric dimension tells us how many vertices we need to pinpoint the locations of all
other vertices based solely on distance measurements. Similarly, the edge metric dimension reveals
the minimal number of edges necessary to achieve the same goal. To add another layer of reliability,
the fault-tolerant metric dimension ensures that the network can still be recognized even when some
vertices or edges are out of action. Throughout our research, we discovered unique symmetries and
structural features of TSNN, which enabled us to identify resolving sets for both vertex- and edge-based
metrics. What’s exciting is that these resolving sets work consistently, regardless of how we label the
network, allowing for reliable identification even in complex scenarios. Notably, we found that the
fault-tolerant metric dimension of TSNN is 3, while its metric dimension stands at 2, highlighting
the network’s impressive adaptability and resilience. By exploring these dimensions, our work sheds
new light on the reliability and flexibility of TSNN, emphasizing its potential for groundbreaking
advancements in areas like computational neuroscience and neural network modeling. We believe
these insights not only enrich the theoretical landscape of graph theory but also pave the way for
innovative applications in fields that thrive on robust and intricate network designs.

Keywords: Metric Dimension, Edge Metric Dimension, Fault-tolerant metric dimension, Tickysim
Spiking Neural Network, Resolving Sets

1. Introduction

In the modern, quickly changing digital world, cryptography acts as a decisive hurdle for the safe-
keeping of confidential data and the security of communication channels against more and more sophis-
ticated cyber threats. Along with steady updates, this governing area uses math and network theories
at its core to build up defenses. In the area of graph theory, especially, the metric dimension being one
of the actors that offers some of the most practical tools to enable cybersecurity and speed up techno-
logical progress is one unresolved area that continues to dwindle [1, 2, 3]. The connection between
graph theory and chemistry, which is known also as mathematical chemistry, uses multidimensional
solutions to chemical problems and gives mathematicians practical situations that allow them to create



new formulas and techniques for applications in the world. This interdisciplinary collaboration accel-
erates mathematical developments and increases efficiency, ultimately reducing costs associated with
chemical experimentation and personnel [4, 5].

Moreover, graph theory extends its boundaries beyond chemistry into various scientific and indus-
trial domains, including medicine, industry, networking, artificial intelligence, and more. Applications
range from designing circuits in electronics, planning routes in transportation networks, optimizing
schedules in education, to enhancing strategies in military operations. These diverse applications un-
derscore the broad relevance and importance of graph-theoretical concepts in addressing complex chal-
lenges across different fields [6, 7, 8].

2. Metric Dimension

2.1. Definition and Concept

Metric dimension is a fundamental parameter in graph theory that determines the minimum number
of vertices required to uniquely identify all other vertices in a graph based on their pairwise distances.
Formally, for a graph G = (V, E), the metric dimension (G) is defined as the smallest cardinality of
a vertex subset S C V such that every vertex in V can be uniquely determined by its distances to the
vertices in S [9, 10].To see its importance, we have presented data about the metric dimension concept
in different science areas (see Figure 1).

Field Percentage of Papers
Mathematics 42.5%
Computer Science 25.3%
Engineering 8.4%
Physics 6.4%
Decision Sciences 3.1%
Material Science 2.3%

Table 1: Distribution of Papers Across Fields (Scopus Database)
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Figure 1: Bar Graph of Paper Distribution Across Fields

The metric dimension and IA work together for diagnosing different forms of deases and clarifying
the stages of desease as shown in the blew figure .
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Figure 2: Transformative integration of Al in precision medicine and MD. [11]
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Now, we can briefly see its importance in different fields of science

2.2. Applications in Chemistry

In chemistry, the metric dimension plays a pivotal role in analyzing molecular structures and net-
works. By identifying a minimal set of vertices that uniquely determine the structure, metric dimension
facilitates the systematic arrangement and graphical representation of complex chemical data. This
approach enhances precision in experiments, improves the efficiency of detecting subtle changes in
molecular configurations, and supports advancements in pharmaceutical research and materials sci-
ence.

2.3. Medical and Industrial Applications

2.3.1. Medical Practice

Metric dimension contributes to precise dosage calculations in medical treatments, enabling tai-
lored therapies based on patient-specific metrics such as weight and medical history. It also sup-
ports biomedical research by providing structured data analysis and comprehensive patient evaluations,
thereby advancing personalized medicine [12].

2.3.2. Industrial Use

In industrial settings, metric dimension optimizes manufacturing processes by ensuring consistency
and precision in operations. From design to production, it facilitates global standardization of products,
enhances quality assurance, and improves resource management efficiency. Applications range from
optimizing supply chain logistics to designing robust and reliable production systems [13].

2.4. Network Design and Reliability

Metric dimension plays a critical role in network design, particularly in wireless communication
systems and distributed computing environments. By minimizing signal interference and ensuring
fault-tolerant operation, metric dimension enhances network reliability and resilience against hardware
failures and cyber-attacks. Applications include designing resilient communication infrastructures,
optimizing data transmission efficiency, and ensuring continuous service availability in dynamic and
challenging environments [14].

The integration of metric dimension into various scientific and industrial fields underscores its crit-
ical role in enhancing efficiency, reliability, and precision. By leveraging graph-theoretical concepts
like metric dimension, researchers and practitioners can address complex challenges in network de-
sign, cybersecurity, medicine, and beyond, paving the way for innovative solutions and sustainable
advancements in the digital era.



2.5. Tickysim Spiking Neural Network

Tickysim spiking neural networks represent a specialized area of study within computational neuro-
science and neural network modeling. These networks simulate the behavior of neurons and synapses
in biological systems, providing insights into neural information processing and network dynamics
[15].

The configuration of Tickysim spiking neural networks lends itself well to the application of graph
theory concepts, particularly metric dimension. These networks are created by neurons together which
are the vertices and edges which signify the synaptic connections and as a result, lead to the formation
of the complex graph structure [16]. The study of the metric dimension of the networks in Tickysim
includes the determination of the minimum number of landmark neurons that will enable solving the
problem of the network in which other neurons are provisioned at the same time. Regarding the
metric space, such a function is one of the main basic concepts in general topology and common
metric space theory [17, 18]. In addition, the calculation of the metric dimension is an important step
in determining the topological and structural properties of the networks, and it is a key factor that
facilitates the development of accurate models that can be used to simulate various processes of the
neural system. The focus of this research is to examine the geometric and connectivity properties of
the Tickysim spiking neural networks in order to compute their metric dimension. In this connection,
the identification of the minimal resolving sets that are responsible for the unique identification of the
neurons is a step. We aim to accomplish this in order to have a wider and deeper knowledge of these
networks in modeling complex neural phenomena f.e. Hodgkin-Huxley-type and integrate-and-fire
models of neurons [19, 20]. Along with the research, we point out the capacity of Tickysim spiking
neural networks to increase technological innovations and the information about neural information
processing in living bodies that are always on the lead with scientists

2.6. Structure of Tickysim Spiking Neutral Network (TSNN)

The Tickysim Spiking Neutral Network (TSNN) we are investigating consists of m X r vertices
arranged in r rows and m columns, where r and m are equal, making it a symmetrical graph. We start
with n = 3 as the base unit structure, as shown in Figure 4, and extend our analysis to n = z.
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Figure 3: Structure of Tickysim Spiking Neural Network (TSNN) for r x m

The vertices and edges of TSNN for various values of n are summarized in Table 2.



TSNN n=11|n
Total Vertices 4
Total Edges 5
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Table 2: Vertices and edges of Tickysim Spiking Neural Network (TSNN)

3. Results Computed for TSNN
The main objective of the study will be seen in Theorem 1, and a unique subset for checking the
resolvability of V(G) is selected.

Theorem 3.1. Let TSNN be the graph of the Tickysim Spiking Neural Network. The metric dimension
of TSNN is 2, meaning there exist two vertices in TSNN such that their distance vectors uniquely
identify all other vertices in the graph.

Proof. Let W = {aj 1,a,+1,1} be an ordered vertex subset of 7SNN. We will show that W is the
resolving set. Below are the unique depictions of the vertices of TSNN concerning W.
For n = 1, we have the resolving set W = {a 1,421 }:

r/(arswg |W) = {

For n = 2, we have the resolving set W = {a; 1,a3}:

(Cg—l,l) if}’5=1,C§:1,2
(Cg,Cg —1) ifr5 =2,C§ = 1,2

(ce —1,2) ifrs =1,c =1,2,3

cg, 1l ifrs=2,ce =1,2
r,(ars,% ’W) — ( g ) . ) B 5_

(ce,2) if rg =2,ce =3

(ce+1l,ce—1) ifrs=3,c=1,2,3

For n = 3, we have the resolving set W = {ay 1,a4}:

(ce —1,3) ifrs=1,ce =1,2,3,4
(Cé,z) ifl"5:2,C§:1,2,3
r'(ars,cg\W): (cg,3) ifrs =2,ce =4
(C§+1,1) ifr5:3,c§:l
((ce+1ce+1) ifrs=3,ce =2,3,4
For n = 4, we have the resolving set W = {a 1,as 1 }:
((ce,4) ifrs=1,ce=1,...,5
(ce,3) ifrs=2,ce =1,...,4
r’(ar5765|W): (ce+1,2) ifrs =3,c =1,2,3
(C§—|—1,C§—l) ifr5:4,c5:1,2,3,4
\(C§+3,C§—l) ifl”5:5,C€:1,...,5

For n =5, we have the resolving set W = {a 1,46 }:
(

() ifrs=1,ce=1,...,6
(ce,4) ifrs =2,ce =1,...,5
(ce+1,3) ifrs=3,ce =1,...,4
r'(ar&cé | W) =9 (ce +2,2) ifrs=4,ce =1,...,3
(ce+3,1) if rs =35,ce =1,2
(ce+3,ce—1) ifrs=5,c¢=3,...,6
\(c§+5,c§—1) ifrs=6,ce=1,...,6



For n = 6, we have the resolving set W = {a 1,a7,1}:

(

(cg,6) ifrs=1,ce =1,...,7
() ifrs=2,ce =1,...,6
(ce +1,4) ifrs=3,ce =1,...,5
r'(ar&cé | W)= {q (ce +2,3) ifrs=4,ce =1,...,4
(ce +3,2) ifrs=5,ce =1,...,3
(ce+3,ce—1) ifrs=6,ce=1,...,7
L(c€+6c¢§—1) ifrs=7,ce=1,...,7

For n, we have the resolving set W = {aj 1,an+1,1}:

(

(cg,n) ifrg=1,ce=1,...,n+1
(cg,n—1) ifrs=2,ce=1,...,n

(ce +1,n—2) ifrs=3,ce=1,...,n—1
(ce+2,n—3) ifrg=4,ce =1,....n—2

r'(ar5,c5 |W): . § g

(cg +(n—3),1) ifrs=n—2,ce=1,...,3
(ce+(n—2),ce—1) ifrsg=n—1lce=1,....n
\(cé:—i—n,cé—l) ifrg=n+lce=1,....,n+1

Since the representations for W are unique, it is a resolving set with cardinality 2.

For any vertex ay; ¢, in TSNN, we need to show that (a’(a,&cé ,an2), d(a,w5 ,an3), d(a,&cg ,An.2n+3))
is unique. Since the distances from Arg,ce 10 ap2, An 3, and ay, 7,43 are different for different Arg.ce (as
shown in the proof of the resolving set), thus the subset W is a resolving set.

[

Remarks Let TSNN denote the graph of the Tickysim Spiking Neural Network. According to
Theorem 1, the metric dimension of TSNN is determined to be 2:

dim(TSNN) =2

4. Edge Metric Dimension

In graph theory, the edge metric dimension (EMD) is an extension of the metric dimension, focusing
on the unique identification of edges within a network rather than vertices. Formally, the edge metric
dimension of a graph is the minimum number of edges (known as an edge resolving set) needed to
distinguish all other edges by their respective distances to these reference edges [21, 22].

4.1. Importance of Edge Metric Dimension

The concept of edge metric dimension is a complementary yet crucial extension to the metric
dimension in network analysis. While the metric dimension enables unique identification of vertices,
the edge metric dimension allows for each edge in the graph to be uniquely identified. This distinction
is particularly important in applications where edge-based attributes—such as pathways, connections,
or flows—are as significant as the nodes themselves [23, 24].

In networks such as the Tickysim Spiking Neural Network, where connections between vertices
are critical to the network’s overall function, the ability to uniquely identify edges provides a more
comprehensive understanding of the network’s structure and behavior. For example, in computational
neuroscience, distinguishing edges is essential for modeling synaptic connections and understanding
signal pathways, making the edge metric dimension highly relevant for analyzing and designing neural
networks [25, 26].



4.2. Why Edge Metric Dimension Matters Alongside Metric Dimension
Although both metric dimensions contribute to understanding network structure, each offers unique
insights:

e Metric Dimension: Primarily addresses the problem of vertex identification. It determines the
minimum set of vertices required to uniquely identify every other vertex based on distance, which
is crucial for understanding positional relationships within the network [27].

o Edge Metric Dimension: Focuses on distinguishing edges, providing a level of resolution that
vertex-based identification alone cannot achieve. Even in the presence of the metric dimen-
sion, the edge metric dimension adds value by offering insights specifically about the pathways
and connections. For networks where interactions (edges) are essential such as in transporta-
tion systems, neural networks, or communication infrastructures—the edge metric dimension is
indispensable [28].

In short, the edge metric dimension enhances our ability to analyze networks with greater depth,
ensuring that both vertices and edges can be uniquely identified. This dual approach to metric di-
mensions supports robust structural analysis, which is particularly valuable for complex networks with
intricate connection patterns, such as the Tickysim Spiking Neural Network.

Figure 4: Structure of Tickysim Spiking Neural Network for n=4

Theorem 4.1. Let G|, represent a Tickysim Spiking Neural Network, where j denotes the number
of rows and ns denotes the number of vertices. The edge metric dimension of Gj,, is 3. Let S =
{a3,2),a32p+2):@(2p2)} be a resolving set.

Proof. We aim to show that S is a minimal edge-resolving set for G; ,, by proving that each edge
A(jne) 11 Gjn, has a unique distance vector concerning the edges in S.

J:lo

4.3. Edge Set of Gj
Consider the full edge set of G| .

{0(1.,1) 18(1,2):4(1,3),4(1,4)s -+ A (1,ns)r A(2,1):4(2,2),4(2,3):(2,4)>

...,a(zmo),...,a(jjl),a(j72)7a(j73),a(j74),...,a(mo)}.



4.4. Distance Vector Definition

Define ds = j +ng, and let the distance vector r(a(; ,)|S) represent the distance from an edge

a(jne) to the edges in S. We analyze the following cases based on the relationship between j 4 ns and

p+2.

4.5. Casel: j+ns <p+2

In this case, the distance vector r(a(j ,.)|S) is given by:

( (J,no) |S) (d5_37p+j_n6_k7p_j)a

where k is a parameter that varies with each specific line. We present the distance calculations by lines:
1. Line 1: Set k =0,

r(a(jn0)lS) = (ds =3, p+ j —ne,p = j).

2. Line 2: Setk =1,

r(a(jne)lS) = (ds =3,p+j—no—1,p—j).
3. Line 3: Set k =2,

r(a(jng)lS) = (ds =3,p+j—ne—2,p— j).
4. Line 4: Set k =3,

r(a(jng)lS) = (ds =3,p+j—ne—3,p— j).
5. Line 5: Set k =4,

r(a(jng)lS) = (ds =3,p+ j—ng —4,p— j).

6. Line 6: Set k = 5,

( (j,no) |S) <d5_37p+]_n0_57p_])

n-th line: k=mn,
r(a(j,ng)|S) = (d5 _3,p+]_7’lo _nvp_.])
This approach demonstrates unique identification of each edge in this case.

4.6. Case?2: j+ng=p+2

In this scenario, the distance vector r(a; ;) |S) becomes:
( (jino) |S) (d5_37p+j_n6_ka”6_1)7

again with each line defined by a unique k value.
1. Line 1: Set k =0,

r(a(jne)lS) = (ds —3,p+j—ng,ne —1).
2. Line 2: Setk =1,

( (J,no) ‘S> (d5—3,p+j—ng—1,nc—l).



3. Line 3: Set k =2,

r(@(jne)|S) = (ds =3,p+ j—ns —2,ns — 1).
4. Line 4: Set k = 3,

( (jino) |S) (ds—3,p+j—ns—3,n5—1).
5. Line 5: Set k = 4,

(J,la IS)=(ds —3,p+j—noc—4,ns—1).
6. Line 6: Set k =5,

( (J,no) ‘S> (d6_37p+j_n6_57n6_1)-

n-th line: &k =mn,
( (J,no) ‘S) (d5—3,p+j—l’lg—l’l,l’l6—l).

4.7. Case3: j+ng >p+?2
In this case, the distance vector r(a; ,|S) simplifies as follows:

r(a(jvn0)|S) = (d5 _37j_27n0_ 1)

Expanding each line here will yield the same distance vector for all a(; , ) in this case. Since the
vector does not change, it uniquely identifies all edges in this situation.

By analyzing the distance vectors for each case, we confirm that the set S = {a(3’2) 2A(32p42) a(2p72)}
uniquely identifies each edge in G| ;,,, establishing that it is indeed a resolving set. Consequently, the
edge metric dimension of G|, is 3, as required.

O

5. Understanding Fault-Tolerant Metric Dimension

In the study of graph theory, the concept of fault-tolerant metric dimension plays a vital role,
particularly in applications that require resilience and reliability in network designs.

5.1. What is Fault-Tolerant Metric Dimension?

Let G = (V,E) represent a graph, where V is the collection of vertices and E is the collection
of edges. The fault-tolerant metric dimension of a graph, denoted as dim f(G), refers to the smallest
subset S C V that allows for the unique identification of all other vertices, even when a certain number
of vertices, ¢, are removed from the graph [29, 30].

To put it simply, for any group of vertices removed from the graph, the remaining vertices must
still be distinguishable based on their distances to the vertices in the set S. Mathematically, this can be
expressed as:

dv,S) #d(V',S) W eV\T,

where d(v,S) represents the distance from vertex v to the vertices in S.

How is it Implemented? Implementing the fault-tolerant metric dimension involves several sys-
tematic steps:

1. Analyzing the Graph: Check where the vertices are placed and how are they connected in terms
of reaction to the mathematical representation of graphs as an organized set of vertices and a set of

9



edges.

2. Selecting Candidates: Select candidates for the resolving set that can be often predetermined ac-
cording to their vertices’ significance regarding the connectivity of the object.

3. Testing for Uniqueness: Such conditions should be checked for every selected candidate to ensure
that he or she can have a unique identification, given that any number of different combinations of ¢
vertices can be taken out.

4. Optimizing the Set: Last but not least, adjust the defining set in such a way that the set is adequate to
direct the faults to a few vertices but it should not add much more vertices than the required number([31].

5.2. Why is it Important?

Understanding the fault-tolerant metric dimension is crucial for several reasons:

1. Enhancing Network Reliability: In application areas like telecommunication and computer net-
working, for example, creating systems that can operate in the presence of specific failures is critical.
The metric dimension known as fault-tolerant helps in the development of networks that can afford to
have a break and still be connected.

2. Building Robust Systems: The methodology of creating fault-tolerant systems is more reliable by
default, so it is essential for transportation and utility applications.

3. Optimizing Resource Use: Understanding the characteristics of the fault-tolerant metric dimension
will allow designers to develop networks that are resourceful, yet are not compromised on quality and
performance.

4. Applications Across Various Fields: This is not an exclusive theory: this concept is used in robotics,
in networks of sensors, and in distributed computing so that these systems are able to perform under
pressure [32].

In conclusion, the fault-tolerant metric dimension is a fundamental measure in graph theory that
effectively enhances the resilience of networks. Its usage is extended to a great number of actual case
scenarios, and therefore it remains one of the key components of the contemporary network environ-
ment.

Theorem 5.1. Let TSNN be a graph of the Tickysim Spiking Neutral Network. Then,
dim¢(TSNN) = 3.

Proof. To establish the theorem, let wy = {611,1,61(” +1),1,9(n +1)7m} be an ordered vertex subset of

TSNN. We will show that wy serves as a fault-tolerant resolving set for TSNN. Each vertex a4

in TSNN has a unique representation in terms of its distances from vertices in wy. Here, p and ¢

represent row and column indices, respectively, with p € {1,2,... ,n+1} and g € {1,2,...,m}.
Define the representation function of a vertex a, , with respect to wy as:

’"/(ap,q | Wf) = (d(ap,qaal,l)7d(ap,q>a(n+l),l)ad(ap,qaa(nﬂ),m))-

Vertex Representations for TSNN with respect to wy:
Haig | wy) = {(q— I,m—1m+2—gq) forg=1,2,....m,

(ggm—2,m+1—¢q) forg=1,2,....m—1,

r/(alq | wy) = {

Since each vertex a, , has a unique representation with respect to wy, wy functions as a resolving
set for TSNN.

We now demonstrate that wy is a fault-tolerant resolving set by showing that removing any one of
its elements still results in a resolving set.

(g,9—1,m+1—-gq) forg=m.

10



5.3. Case ]

Removing a4 1), from wy = {a11,a(,41),1,8(n+1)m} yields ws = {a1 1,a (41,1 }. The represen-
tations are:

raiq | ws)= {(q— I,m—1) forg=1,2,...,m.
Since each vertex of TSNN is uniquely represented with respect to ws, it remains a resolving set.

54. Case?2

Removing a, )| from wy yields we = {a1,1,d(,41),m }- The representations are:

Y(ai 4| we) = {(q—l,m—i—Z—q) forg=1,2,...,m.

Since each vertex of TSNN is uniquely represented with respect to wg, it remains a resolving set.

5.5. Case 3

Removing ay | from wy yields w7 = {a(nH)J,a(nH)m}. The representations are:

raiqg|wy) = {(m—l,m+2—q) forg=1,2,...,m.

Since each vertex of TSNN is uniquely represented with respect to w7, it remains a resolving set.
Thus, wy is a fault-tolerant resolving set for TSNN, hence the proof. ]

6. Remark

Let TSNN be a graph of the Tickysim Spiking Neural Network. From our previous results, we
have established that the fault-tolerant metric dimension of TSNN, denoted as dim¢(7SNN), is 3, as
proven in Theorem 2.

In addition to this, Theorem 2.1 demonstrated that the metric dimension of TSNN, denoted as
dim(TSNN), is 2. The metric dimension is defined as the minimum number of vertices in a resolving
set such that all other vertices can be uniquely identified based on their distances from the vertices in
the set.

Given these findings, we can conclude the following:

dim(TSNN) < dim¢(TSNN) < 3.

This means that a metric dimension of 7SNN has an upper bound on the fault-tolerant metric
dimension showing that the dim(7SNN) < 3 These established unequal relations are therefore conclu-
sive in as far as the following holds, the Tickysim spiking Neural Network architecture is structurally
complex and an efficient ability to identify vertices, in light of even the regular metric dimensions or
fault cases is possible.

Altogether, the foregoing analysis of the relationship between dim(7SNN) =2 and dim¢(TSNN) =
3 demonstrates how the network can preserve vertex distinctiveness while offering tolerance to up to
three vertex faults. This implies that TSNN design enhances the ability of the proposed network to
communicate, and also to be on the safe side should there be failure in the process, making it highly
applicable in computational society needs including computational neuroscience and neural network
modeling.

11



7. Importance of Results

This tour through the Tickysim Spiking Neural Network (TSNN) universe is quite thrilling; it has
offered us some great discoveries. We have thus discovered that through the discovery of the metric
and edge metric dimensions it is possible to identify the smallest number of vertices that would be
distinct from any of the other vertices depending on the distances relating to them. This discovery is
like finding a magic dish — it allows for designing more relaxed configurations for frequent interactions
using as fewer resources as is it seen in more formal environments.

But that’s not all! In informing how networks are modeled, an understanding of the metric dimen-
sion allows. Once we find out where the best should place these key vertices, we can considerably
raise the network’s performance and make it sufficiently versatile to expand and extend without com-
promising its productivity. It is like having a perfect engine that works efficiently while new gears
are installed. During our work, we also came across some great uses of edge metric dimensions as
identified below. They assist in one identifying edges clearly which provide a clearer picture of how
neurons in the work network relate. This knowledge is a big deal because building precise models
of these pathways is essential for computational neuroscience to decode the operation of our nervous
system.

However, when identifying the fault-tolerant metric dimension, it implies that one can construct
less susceptible networks. Since here we can ensure that if some vertices are removed, we will still
be able to identify the vertices added, this will Strengths Weaknesses. While the width-first traversals
can be more efficient in some cases, the depth-first algorithm is quite stable and reliable for many
applications.

8. Conclusion

As we wrap things up, it’s clear that our exploration into the metric dimension of the Tickysim
Spiking Neural Network has opened some exciting doors for us. By identifying a minimal resolving
set, we’ve shown how this knowledge can lead to smarter, cost-effective network designs. The symme-
try we found in TSNN not only fine-tunes our design strategies but also holds real-world significance,
particularly in areas like computational neuroscience. These insights are not just academic—they have
practical implications that can drive real change in technology and research. Our findings underscore
how crucial these dimensions are for shaping the future of network design and efficiency. With this
deeper understanding, we’re eager to inspire innovations that could make a meaningful difference
across various applications, leading to more reliable and effective networks in the future. Exploring
the connections between metric dimensions and fault tolerance gives us a comprehensive approach to
enhancing network structures. As we continue this journey, we’re excited to see how these principles
will guide future developments, paving the way for networks that are smarter and more resilient.

Data Availability: The data supporting the findings of this study are available within the article. Any
additional data or materials relevant to the research can be provided by the corresponding author upon
reasonable request.
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