ANTI INFLAMMATORY EFFECT AND GC-MS METABOLOME PROFILING OF Curcuma haritha Mangaly and M. Sabu – AN ENDEMIC HERB OF KERALA, SOUTH INDIA

Authors

  • M R Niranjana Cell and Molecular Biology Division, Department of Botany, University of Calicut, Malappuram – 673 635, Kerala (India)
  • J E Thoppil Cell and Molecular Biology Division, Department of Botany, University of Calicut, Malappuram – 673 635, Kerala (India)

DOI:

https://doi.org/10.48165/abr.2024.26.01.9

Keywords:

Curcuma haritha, cyclooxygenase, lipoxygenase, iNOS, cellular nitrite, GC-MS analysis

Abstract

Curcuma haritha (Zingiberaceae) is a less explored endemic ethnomedicinal herb  of north Kerala (India). The aim of present study was to evaluate the anti inflammatory potential and phytochemical profile of methanolic rhizome  extract of C. haritha. The preliminary assays performed were, the proteinase  inhibition and the protein denaturation inhibition tests, followed by  cyclooxygenase, lipoxygenase, iNOS and cellular nitrite activity/expression  assays in LPS stimulated RAW 264.7 cells. The toxicity of the extract was studied  using MTT assay and the expression of COX-2 inflammatory protein in treated  cells was determined by indirect ELISA. The phytochemical profiling was done  by GC-MS analysis. All the assays revealed a dose-dependent anti-inflammatory  effect in vitro. The inhibition of inflammatory enzymes, COX-2, Lox and iNOS  were observed as 62.16 ± 0.49, 57.25 ± 1.98 and 56.74 ± 2.73%, respectively, at  maximum concentration (100 µg mL-1). The cellular nitrite levels and expression  of COX-2 mediator protein also decreased in treated cells proving the anti inflammatory effect of the extract. GC-MS screening revealed the presence of 54  phytoconstituents including anti-inflammatory compounds like curcumenol,  chamazulene, etc., Therefore, in the light of above results, C. haritha can be  considered as a potential anti-inflammatory drug source plant. 

Downloads

Download data is not yet available.

References

Akarchariya, N., Sirilun, S., Julsrigival, J. and Chansakaowa, S. 2017. Chemical profiling and antimicrobial activity of essential oil from Curcuma aeruginosa Roxb., Curcuma glans K. Larsen & J. Mood and Curcuma cf. xanthorrhiza Roxb. collected in Thailand. Asian Pacific Journal of Tropical Biomedicine, 7: 881-885.

Anuchapreeda, S., Khumpirapang, N., Chiampanichayakul, S., Nirachonkul, Wariya S., Aroonchai U., Toyonobu U. and Okonogi, S. 2018. Characterization and biological properties of zederone and zedoarondiol from rhizomes of En-Lueang (Curcuma cf. amada). Natural Product Communications, 13: 1615-1618.

M.R. Niranjana and J.E. Thoppil

Axelrod, B., Cheeseborough, M. and Laakso, S. 1981. Lipoxygenases in soybean. Methods in Enzymology, 71: 441-451.

Ayawa, N.G., Ramon-Yusuf, S.B. and Wada, Y.A. 2021. Toxicity study and anti-trypanosomal activities of aqueous and methanol whole plant extracts of Brillantaisia owariensis on Trypanosoma brucei-induced infection in BALB/c mice. Clinical Phytoscience, 39(7): [https://doi.org/10.1186/s40816-021-00267-3].

Babu, A.V., Rao, R.S.C., Babu, B.H. and Subbaraju, V.G. 2013. Isolation and bioactivity of diacetyltetritol from Merremia emarginata (Burm. f). Natural Products, 9: 201-208. Babu, B.C., Sunil, A., Mukunda, A., Pynadath, M.K., Mohan, A. and Aswathy. 2020. Anti-cancer potency of garlic (Allium sativum) extract in comparison to 5-fluorouracil - An in vitro study. Oral & Maxillofacial Pathology Journal, 11(1): 11-15.

Baby, S., Raj, G., Thaha, A. and Dan, M. 2010. Volatile chemistry of a plant: Mono-sesquiterpenoid pattern in the growth cycle of Curcuma haritha. Flavour and Fragrance Journal, 25: 35-40. Bindu, S., Mazumder, S. and Bandyopadhyay, U. 2020. Non-steroidal anti-inflammatory drugs

(NSAIDs) and organ damage: A current perspective. Biochemical Pharmacology, 180: 114147. [https://doi.org/10.1016/j.bcp.2020.114147].

Chakraborty, K. and Bhattacharyya, A. 2013. Role of proteases in inflammatory lung diseases. Proteases in Health and Disease, 7: 361-385.

Chaves, J.S., Leal, P.C., Pianowisky, L. and Calixto, J.B. 2008. Pharmacokinetics and tissue distribution of the sesquiterpene alpha-humulene in mice. Planta Medica, 74(14): 1678-1683. Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L. 2017.

Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6): 7204- 7218.

Dosoky, N.S. and Setzer, W.N. 2018. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients, 10(9): 1196. [https://doi.org/10.3390/nu10091196]. El-Gayar, S., Thüring-Nahler, H., Pfeilschifter, J., Röllinghoff, M. and Bogdan, C. 2003. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. Journal of Immunology, 171(9): 4561-4568.

ED 50 plus v1.0., Computer software. 2000. Available online – [https://archive.org/details/ed50v10_zip]. (accessed on 26 October 2021).

IBM Corp., 2011. IBM SPSS Statistics for windows, Version 20.0. Armonk, NY: IBM Corp. Jakovlev, V., Isaac, O. and Flaskamp, E. 1983. Pharmakologische untersuchungen von kamillen inhaltsstoffen. VI. Untersuchungen zur antiphlogistischen wirkung von chamazulen und matricin [Pharmacologic studies on chamomile compounds. VI. Studies on the antiphlogistic effect of chamazulene and matricine]. Planta Medica, 49(2): 67-73.

Kaliyadasa, E., and Samarasinghe, B.A. 2019. A review on golden species of Zingiberaceae family around the world: Genus Curcuma. African Journal of Agricultural Research, 14: 519-531. Kambrath, S.M. and Thoppil, J. 2019. Screening selected species of Gomphostemma Wall. ex Benth. from Western Ghats for anti-inflammatory activity. International Journal of Pharmaceutical Sciences and Research, 61: 2012-2017.

Karakaş, D., Ari, F. and Ulukaya, E. 2017. The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turkish Journal of Biology, 41(6): 919-925.

Kumar, S. and Ritika. 2020. A brief review of the biological potential of indole derivatives. Future Journal of Pharmaceutical Sciences, 6: [https://doi.org/10.1186/s43094-020-00141-y]. Lepoivre, C.M., Yapo, B., Lemaire, A., Thelander, G., Tenu, L. and Pierre, J. 1990. Alteration of ribonucleotide reductase activity following induction of nitrite generating pathway in adenocarcinoma cells. Journal of Biological Chemistry. 265: 14143-14149.

Liu, Y., Chen, W., Zheng, F., Yu, H. and Wei, K. 2022. Xanthatin alleviates LPS-induced inflammatory response in RAW264.7 macrophages by inhibiting NF-κB, MAPK and STATs activation. Molecules, 27(14): 4603. [https://doi.org/10.3390/molecules27144603].

Anti-inflammatory effect/GC-MS metabolome profiling of Curcuma haritha 11

Lo, J.Y., Kamarudin, M.N., Hamdi, O.A., Awang, K. and Kadir, H.A. 2015. Curcumenol isolated from Curcuma zedoaria suppresses Akt-mediated NF-Κb activation and P38 MAPK signalling pathway in LPS-stimulated BV-2 microglial cells. Food and Function, 6(11): 3550-3559.

Makabe, H., Maru, N., Kuwabara, A., Kamo, T. and Hirota, M. 2006. Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Natural Product Research, 20(7): 680-685. Mangaly, J.K. and Sabu, M.A. 1993. A taxonomic revision of the south Indian species of Curcuma Linn. (Zingiberaceae), Rheedea, 3: 139-171.

Modi, C., Bhatt, P., Pandya, K., Patel, H. and Patel, U. 2019. Comparative evaluation of in vitro anti inflammatory activity of different extracts of selected medicinal plants from Saurashtra region, Gujarat. International Journal of Current Microbiology and Applied Sciences, 8: 1886-1898.

Montgomery, C.D. 2012. Design and Analysis of Experiments. John Wiley, New York, USA. Murakami, A. and Ohigashi, H. 2007. Targeting NOX, iNOS and COX-2 inflammatory cells: Chemo prevention using food phytochemicals. International Journal of Cancer, 121(11): 2357-2363. Nakazawa, H., Chang, K., Shinozaki, S., Yasukawa, T., Ishimaru, K., Yasuhara, S., Yu, Y.M., Martyn, J.A., Tompkins, R.G., Shimokado, K. and Kaneki, M. 2017. iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: Possible involvement of Sirt1 S nitrosylation-mediated acetylation of p65 NF-κB and p53. PloS One, 12(1): e0170391. [https://doi.org/10.1371/journal.pone.0170391].

Osman, N.I., Sidik, N.J., Awal, A., Adam, N.A. and Rezali, N.I. 2016. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. Journal of Intercultural Ethnopharmacology, 50(4): 343-349.

Oyedepo, O.O. and Femurewa, A.J. 1995. Anti‐protease and membrane stabilizing activities of extracts of Fagra zanthoxiloides, Olax subscorpioides and Tetrapleura tetraptera. International Journal of Pharmacognosy. 33: 65‐69.

Raj, G., Baby, S., Dan, M., Thaha, A.R.M., Sethuraman, M.G. and George, V. 2008. Volatile constituents of the rhizomes of Curcuma haritha Mangaly and Sabu from Southern India. Flavour and Fragrance Journal, 23: 348-352.

Redfern, J., Kinninmonth, M., Burdass, D. and Verran, J. 2014. Using Soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. Journal of Microbiology and Biology Education. 15: 45-46.

Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A., Worzella, T.J. and Minor, L. 2013. Cell viability assays. Assay Guidance Manual. Eli Lilly & Company and the National Centre for Advancing Translational Sciences, Bethesda, Madison, USA.

Sabu, M. 2006. Zingiberaceae and Costaceae of South India. Indian Association for Angiosperm Taxonomy, Calicut University, Tenjhipalam, Kerala, India. p. 155.

Safayhi, H., Sabieraj, J., Sailer, E.R. and Ammon, H.P. 1994. Chamazulene: An antioxidant-type inhibitor of leukotriene B4 formation. Planta Medica, 60(5): 410-413.

Sakat, S., Juvekar, A.R. and Gambhire, M.N. 2010. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. International Journal of Pharmacy and Pharmaceutical Sciences, 2(1): 146-515.

Salter, M., Duffy, C., Garthwaite, J. and Strijbos, P.J. 1996. Ex vivo measurement of brain tissue nitrite and nitrate accurately reflect nitric oxide synthase activity in vivo. Journal of Neurochemistry, 66: 1683-1690.

Sinha, S., Doble, M. and Manju, S.L. 2019. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism-based approach. Bioorganic and Medicinal Chemistry, 27(17): 3745-3759.

Trevizan, L.N.F., Nascimento, K.F.D., Santos, J.A., Kassuya, C.A.L., Cardoso, C.A.L., Vieira, M.D.C., Moreira, F.M.F., Croda, J. and Formagio, A.S.N. 2016. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. and Cambess.) Radlk. Journal of Ethnopharmacology, 192: 510-515.

M.R. Niranjana and J.E. Thoppil

Vasudevan, C.N.S. and Neerakkal, I. 2021. GC-MS analysis and in silico activity prediction of phytocompounds in the roots of Chrysopogon zizanioides (L.) Roberty. Plant Science Today, 8: 218-224.

Walker, M.C. and Gierse, J.K. 2010. In vitro assays for cyclooxygenase activity and inhibitor characterization. Methods in Molecular Biology, 6:131-144.

Waltz, P., Escobar, D., Botero, A.M. and Zuckerbraun, B.S. 2015. Nitrate/nitrite as critical mediators to limit oxidative injury and inflammation. Antioxidants and Redox Signalling, 23(4): 328-339. Wang, Q., He, Y., Shen, Y., Zhang, Q., Chen, D., Zuo, C., Qin, J., Wang, H., Wang, J. and Yu, Y.

Vitamin D inhibits COX-2 expression and inflammatory response by targeting thioesterase superfamily member 4. The Journal of Biological Chemistry, 289(17): 11681-11694. Yang, X., Zhou, Y., Chen, Z., Chen, C., Han, C., Li, X., Tian, H., Cheng, X., Zhang, K., Zhou, T. and Zhao, J. 2021. Curcumenol mitigates chondrocyte inflammation by inhibiting the NF‑κB and MAPK pathways, and ameliorates DMM‑induced OA in mice. International Journal of Molecular Medicine, ??????(4), 192. [https://doi.org/10.3892/ijmm.2021.5025].

Published

2024-03-23

How to Cite

ANTI INFLAMMATORY EFFECT AND GC-MS METABOLOME PROFILING OF Curcuma haritha Mangaly and M. Sabu – AN ENDEMIC HERB OF KERALA, SOUTH INDIA. (2024). Applied Biological Research, 26(1), 66–77. https://doi.org/10.48165/abr.2024.26.01.9